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Abstract

Genomic applications such as genomic selection and genome-wide association have become increasingly common since the advent of ge-
nome sequencing. The cost of sequencing has decreased in the past two decades; however, genotyping costs are still prohibitive to gath-
ering large datasets for these genomic applications, especially in nonmodel species where resources are less abundant. Genotype imputa-
tion makes it possible to infer whole-genome information from limited input data, making large sampling for genomic applications more
feasible. Imputation becomes increasingly difficult in heterozygous species where haplotypes must be phased. The practical haplotype
graph (PHG) is a recently developed tool that can accurately impute genotypes, using a reference panel of haplotypes. We showcase the
ability of the PHG to impute genomic information in the highly heterozygous crop cassava (Manihot esculenta). Accurately phased haplo-
types were sampled from runs of homozygosity across a diverse panel of individuals to populate PHG, which proved more accurate than re-
lying on computational phasing methods. The PHG achieved high imputation accuracy, using sparse skim-sequencing input, which trans-
lated to substantial genomic prediction accuracy in cross-validation testing. The PHG showed improved imputation accuracy, compared to
a standard imputation tool Beagle, especially in predicting rare alleles.
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Introduction
The past decade has seen an abundance of genomic sequence
data produced for research and application in agricultural crops.
With these new technologies, comes a question on how to effec-
tively implement them (Torkamaneh et al. 2018). Two of the most

common uses of genome-wide sequence data are genomic selec-
tion (GS) and genome-wide association studies (GWAS). While
most GWAS attempt to locate distinct, causative regions of the
genome, GS incorporates all available markers to predict plant

traits (Meuwissen et al. 2001). GS leverages a training set popula-
tion that has both genotypic and phenotypic data to predict traits
in a related germplasm with only genotypic data (Heffner et al.
2009). This allows breeders to both increase accuracy in selecting

traits with low heritability and accelerate the rate of selections by
decreasing selection cycle time (Xu et al. 2020).

While sequencing data have become increasingly common in
agricultural applications, the financial cost remains a challenge
to widespread implementation. Reduced representation marker

systems have been produced to limit costs of performing genomic
analyses (Romay 2018), all of which vary in marker density and
depth, cost, and genotype confidence. In scenarios with limited
diversity, such as single breeding pools or postbottleneck popula-

tions, individuals share large stretches of sequence. The strong
association between alleles in these blocks, or their linkage

disequilibrium (LD), determines the number and distribution of
genotype markers needed to explain the genetic variation in the
population. High density of markers becomes more important
when performing analyses in populations where LD decays
quickly as in species with high diversity or among unrelated indi-
viduals. High marker density can also be beneficial to incorporate
knowledge on previously studied loci across the genome.

To affordably obtain high-density genotypes or to bridge infor-
mation between different marker platforms it becomes necessary
to impute missing genotypes from available genotype data.
Increasing the stability across genotyping platforms and reducing
per-sample costs, becomes even more relevant in plant breeding
scenarios, where many thousands of offspring are evaluated and
changes in marker platform are common. Computational techni-
ques to impute genome-wide information have been produced to
bridge genotypic information from different marker panels and
augment genotypic information from limited inputs (Yun et al.
2009). Genomic imputation methods often rely on a related train-
ing set with high confidence genotypic information to then pre-
dict missing genotypes. These methods have been shown to
improve consistency and efficiency of analyses of both genome-
wide associations (Spencer et al. 2009) and GS (Cleveland et al.
2011).

Imputation is very common in genomic studies but is still
plagued with barriers to high accuracy in many species. Known
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limitations of imputation stem from LD, allele frequencies, and
population structure of the training population (Alipour et al.
2019). These difficulties are further compounded when working
with a highly heterozygous crop, where both copies of the ge-
nome need to be modeled (Fragoso et al. 2016; Nazzicari et al.
2016). Heterozygosity introduces the challenge of phasing, the
process assigning alleles to haplotypes, a challenge that is not
limited to plants (Friedenberg and Meurs 2016). Imputation accu-
racy has been shown to affect the accuracy of genomic prediction
in multiple scenarios (Pimentel et al. 2015; Wang et al. 2016; Van
Den Berg et al. 2017). In addition, when tracking causative varia-
tion through the genome, high accuracy in imputation is neces-
sary to evaluate variation across the entire genome. Highly
accurate imputation methods are needed to increase the gains
made by GS by making genotyping cheaper, more accurate, and
more consistent.

It has been shown that rare variants contribute to the genetic
load and overall performance of crops (Yang et al. 2017; Kremling
et al. 2018; Kono et al. 2019), making high imputation accuracy, es-
pecially for alleles at low frequency, desirable for plant genomics
applications. Diverse imputation tools exist and are often
designed for different scenarios. One of the more common tools
Beagle (Browning et al. 2018), which was designed for application
in humans, works by leveraging LD between variants to predict
missing genotypes. Beagle uses LD clustering to create an acyclic
graph and a Hidden Markov model (HMM) to infer the most likely
haplotype. Another method EAGLE leverages stretches of identity
by descent (IBD) to perform long-range phasing (Loh et al. 2016).
In humans, where these imputation algorithms have been show-
cased, they have the advantage of large datasets with data from
several thousands of individuals (Loh et al. 2016; Browning et al.
2018), while this is not often possible in many plant breeding sce-
narios.

In maize, it’s been shown that Beagle has difficulty accurately
imputing rare variants, while a haplotype library-based method
such as FILLIN can do so more easily (Swarts et al. 2014). A re-
cently developed method known as the practical haplotype graph
(PHG) was created to leverage known haplotypes in a graph struc-
ture to efficiently impute genotypes. The PHG simplifies the ge-
nome to a set of distinct regions of the genome, for which it
defines haplotypes. These haplotypes are constructed from
whole-genome sequence data or genome assemblies and are
used to construct a trellis graph, capturing the diversity of haplo-
types at each range and the relationships between adjacent hap-
lotype regions. Sequence reads are then aligned to the graph and
an HMM is applied to predict the most likely haplotypes. By align-
ing reads to pan-genome haplotypes, the PHG minimizes errors
due to reference bias, poor alignment, and miscalled variants.
Utilizing a PHG methodology in plant and animal applications
can improve the quality and quantity of genotype data for use in
breeding and mapping scenarios.

Here, we showcase the potential application of the PHG in im-
putation of heterozygous crops. The PHG has already been shown
to be an efficient tool for aiding imputation and GS in breeding of
the inbred cereal crop Sorghum (Jensen et al. 2020). It has also
been implemented to impute genotypes in highly diverse maize
lines (Franco et al. 2020). To show the utility of the PHG in a het-
erozygous crop we must overcome two distinct challenges:
obtaining phased haplotypes to populate the database and
modeling both copies of the genome accurately. Without an
abundance of data, it is very difficult to obtain accurate phasing
in a highly heterozygous species. This study will explore these

challenges by imputing haplotypes from low-coverage skim se-
quencing, while comparing results to Beagle’s performance.

To investigate the construction and performance of the PHG
in a heterozygous scenario, we created a PHG for cassava
(Manihot esculenta), a root crop with high levels of heterozygosity
reinforced by centuries of clonal propagation. In this study, we
utilize sequence data from the previously published HapMapII in
cassava (Ramu et al. 2017), which includes WGS data for 241 cas-
sava clones. These data are used to produce a PHG in cassava
and showcase its effectiveness in genomic imputation in a het-
erozygous crop. We further validate these methods through ge-
nomic prediction and simulation.

Materials and methods
Haplotype sampling
Genomic data were used from the second-generation Cassava
Haplotype map consisting of 241 taxa, including both cultivated
and wild germplasm (Ramu et al. 2017). Raw data are composed
of short-read, whole-genome sequence data from each taxon
amounting to greater than 20� coverage on average. The high
depth of the sequence data is necessary to accurately distinguish
between heterozygous and homozygous variants. We used the
cassava v6 reference genome assembly in this study, which con-
tains 18 chromosome level scaffolds summing to �500 Mbp of
the estimated genome size of 700 Mbp. Haplotype regions, termed
here as reference ranges, were defined by genic regions with addi-
tional 1000 bp flanking sequence resulting in �32,000 reference
ranges after merging overlapping ranges, with an average size of
4 kbp.

The detailed process of creating a PHG is outlined at “https://
bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home”
and has been described previously (Jensen et al. 2020; Valdes
Franco 2020). Here, we outline the specific steps taken to create a
PHG in the heterozygous crop cassava (Figure 1). The major hur-
dle to producing a haplotype graph in a heterozygous species is
obtaining accurately phased haplotypes. Because many of these
cassava lines are cultivated taxa, we expected to find IBD haplo-
types brought about by generations of breeding within restricted
breeding pools. These IBD segments provide confidently phased
haplotypes as well as capturing their relationships to adjacent
haplotypes (Figure 2). We identified and sampled these homozy-
gous haplotypes which we inferred to represent IBD haplotypes.
This was done by measuring the number of heterozygous var-
iants for each reference range in each taxon, then classifying
those haplotypes as homozygous or not. The threshold for haplo-
types to be considered IBD was determined empirically to be
0.001 heterozygous SNPs per base pair (Supplementary Figure
S1), as de novo mutations or errors in variant calling may produce
low levels of perceived heterozygosity. This threshold was addi-
tionally validated by testing imputation accuracy of the PHG.

After haplotypes were sampled from IBD regions of the ge-
nome, they were loaded as GVCF files into a PHG database.
Similar haplotypes were then collapsed based on sequence simi-
larity to produce a representative set of available haplotypes.
Haplotypes are collapsed to make alignment more efficient, while
retaining as much distinct haplotype information as possible.
Collapsing is performed using an unweighted pair group method
with arithmetic mean (upgma) tree from pairwise distance ma-
trix from sequence variants to measure the similarity between
haplotypes. Based on imputation accuracy tests, we chose a level
of similarity (PHG parameter: maximum divergence) to collapse
haplotypes of 0.001, corresponding to less than 1 in 1000
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nucleotide differences between haplotypes. This level of collaps-

ing maintains high accuracy while collapsing redundant haplo-

types (Supplementary Figure S2). We then produced a pan-

genome composed of consensus haplotypes representing the di-

versity of haplotypes.

Predicting haplotypes
Once we obtained a set of consensus haplotypes, we imple-

mented an HMM to infer genome-wide haplotypes from low-

depth genotyping data. Sparse genotype information was created

by downsampling whole-genome sequence data randomly using

samtools to simulate skim sequencing. We randomly sampled 20

taxa from the cultivated varieties within the population to serve

as a test set for downstream analyses, while using the remaining

221 clones for haplotype sampling. To test different levels of se-
quencing depth, we downsampled reads to amounts estimated to
represent 0.1�, 0.5�, 1�, 5�, and 10� single-end, whole-genome
sequence coverage. In addition, we tested imputation using avail-
able Genotype-By-Sequencing (GBS) data for these lines.

These sampled sequences were aligned to the consensus hap-
lotypes stored in the PHG to impute whole-genome variants. A
trellis graph is formed with every reference range representing
separate ranges and the consensus haplotypes as nodes at each
of those ranges. The most likely paths through the graph were
then determined using an HMM Viterbi algorithm. Because cas-
sava is heterozygous and diploid, this step produces the two most
likely paths for each taxon. The emission and transition probabil-
ity parameters of the HMM are defined by the genomes of the ref-
erence population used to build the database. The emission
probabilities are calculated by considering the probability of two
given haplotypes, given the aligned reads. The transition proba-
bilities are defined by the edges between haplotypes in the PHG.

Due to the sparse sampling of IBD haplotypes from heterozy-
gous taxa used to produce the PHG, the database lacked abun-
dant transition information between adjacent reference ranges.
To compensate for this, we aligned WGS for all 241 taxa used to
create the database and predicted most likely paths through the
graph. These paths were then used to augment the transition
probabilities, without contributing any additional haplotypes.

Beagle imputation
We compared our imputation accuracy results to the common
genotype imputation tool Beagle (Browning et al. 2018). Beagle
was developed for the purpose of human data, but is a common
tool used by many plant studies to impute missing genotypes.
Because Beagle v4 has the ability to incorporate genotype likeli-
hoods based on read depth, we used it for the imputation of the
low-depth sequence when it improved accuracy, otherwise we

Figure 1 Imputation Methodology Flowchart. Diagram of methods used for the building PHG databases and performing imputation evaluations.

Figure 2 Haplotype view of the genome. (Top) Representation of
reference ranges informed from genic regions from the reference
genome. (Bottom) haplotypes sampled from runs of homozygosity for
use in PHG with different colors representing separate haplotypes at a
given region (i.e., ranges 1, 2, 5, 6, 7 are homozygous and haplotypes can
be sampled).
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utilized Beagle v5. We used the same HapMapII data from the 241
clones to impute missing genotypes with Beagle.

Genomic prediction
We used 57 clones from a single breeding program, to reduce
effects of population structure, to determine the impact of impu-
tation errors on genomic prediction accuracy using cross-valida-
tion. Reads were downsampled and imputed as previously
described. Three root traits were used for genomic cross-valida-
tion: fresh root yield, root size, and root number. Phenotypes for
each clone were downloaded from CassavaBase.org, constituting
57 clones, spanning 23 years from 1996 to 2018, across 13 loca-
tions in Africa. Tenfold cross-validation was performed by ran-
domly selecting 10% of the clones to hold out and predict using
the remaining clones as a training set. The correlation between
predicted phenotype and the observed best linear unbiased esti-
mate was used as the prediction accuracy. We performed 50 rep-
lications as well as a single holdout prediction to measure
genomic prediction accuracy. A single-step model was
performed:

ŷ ¼ lþ Gi þ Bj þ Rk þ Ll þ Ym þ GiXLl þ GiXYm

Gi � Nð0;Gr2
GÞ; Bj � Nð0; Ir2

BÞ;Rk � Nð0; Ir2
RÞ; Ll � Nð0; Ir2

l Þ;
Ym � Nð0; Ir2

mÞ
:

Here, ŷ is the predicted trait and l is the fixed effect of the
overall mean. Random effects were fitted as follows: G is geno-
type effect of the ith clone, B is the effect of the jth block, R is the
effect of the kth replicate, L is the location of the lth location, Y is
the effect of the mth year, GXL is the interactive effect of the ith
clone and the lth location, and GXY is the interaction effect of the
ith clone and the mth year. This was performed using the mixed
model tool Echidna (Gilmour 2019).

Prephased haplotype PHG
We investigated the viability of using computationally phased
haplotypes to curate a PHG database rather than relying on IBD
regions of the genome. First, we phased the variants from the 241
cassava clones using a combination of Beagle (Browning et al.
2018) and HAPCUT2 (Edge et al. 2017). These variants were used
to create a PHG to be tested against the IBD version of the PHG.
The second test utilized Oxford Nanopore (ONP) long-read se-
quencing from six cassava clones within the HMII population.
High molecular weight DNA was extracted from young cassava
leaves, selected for fragments 20–80 kbp long, and sequenced
with MinION following the manufacturer recommendations.
Variants were called using Guppy and their variants phased with
WhatsHap (Schrinner et al. 2020a). These six clones were then
used to populate another PHG, we will identify as the “ONP6
PHG”. Larger reference ranges were divided into smaller regions
to increase the probability of sampling correctly phased haplo-
types. Twenty clones with the highest relationship to the six taxa
with ONP data were used as the test set for these tests.

Imputation from simulated genotypes
A sample of 20 related individuals from the HapMapII population
was selected to serve as parents for a simulated genotyping sce-
nario. The genomes were phased using Beagle and then used to
populate a PHG database. We then used these parents to simu-
late five generations of random mating given a population size of
100 (Figure 3). Forward genetic simulations were completed us-
ing SLiM (Haller and Messer 2019). Artificial short-read sequenc-
ing was then simulated for these offspring using neat-genreads

(Stephens et al. 2016) at varied coverage levels. Reads were then
aligned using bwa used to call and impute variants using
Sentieon (Kendig et al. 2019) and Beagle. Reads were also aligned
to the PHG formed from the original parents for imputation.

Results
Haplotype sampling
To obtain phased haplotypes for the PHG, we sampled haplotypes
from homozygous regions of each clone. Centuries of clonal prop-
agation and reported inbreeding depression (de Freitas et al. 2016)
suggest cassava germplasm would be highly heterozygous, how-
ever, we found that, on average, �20% of all reference ranges
from each taxon were homozygous. This resulted in a high num-
ber of missing haplotypes in each taxon, but a high confidence in
the phased haplotypes that were sampled. Despite the variability
in the number of homozygous samples by reference range, >90%
of the reference ranges were homozygous in at least 10% of the
HapMapII population (Supplementary Figure S3). From these IBD
haplotypes, we were able to sample �50% of the segregating sites.
This proportion increased to 77% when considering sites with mi-
nor allele frequency above 5%, suggesting that many of the com-
mon variable sites have been sampled.

Imputation and genomic prediction accuracy
Because imputation accuracy is dependent on the relative allele
frequency and phase of the allele being called, we classified geno-
type calls by allele frequency class: homozygous major (both
alleles are identical and have >50% allele frequency in
HapMapII), homozygous minor (both alleles are identical and
have <50% allele frequency in HapMapII), and heterozygous (two
different alleles are present). In our analyses, imputation accu-
racy is defined as the ability of the imputation method to recon-
stitute genome-wide SNPs from the input data. We use the
correlation between the predicted alleles and the true alleles (de-
fined by HapMapII) as a metric to make the PHG and Beagle com-
parable, because the PHG utilizes reads and Beagle utilizes
variants to make their predictions.

Imputation of skim sequence genotyping showed PHG meth-
ods had a large advantage over Beagle using low-coverage se-
quence. At a level of 1� coverage random sequencing, the PHG
predicted allele calls with a correlation of R2¼ 0.84, while the cor-
relation between Beagle predicted alleles and the true calls was
R2¼ 0.69 (Figure 4A). At higher depths of coverage (>5�), the raw
data provide ample information to distinguish between homozy-
gous and heterozygous genotypes, allowing Beagle to determine
the correct genotype. The PHG, however, is able to distinguish be-
tween the available haplotypes at a coverage of 0.5� and adding
additional sequence data does not increase the accuracy, as there
is no correlation between accuracy and coverage beyond 0.5�.

The improved performance of the PHG is most noticeable in
its accurate predictions of heterozygous and rare genotypes. The
PHG was able to impute genotypes with high accuracy regardless
of allele class (Figure 4B). The PHG’s high accuracy at low allele
frequencies for both homozygous (Figure 4C) and heterozygous
genotypes (Figure 4D) display its ability to impute rare alleles.

In addition to skim sequence scenarios, we also tested imputa-
tion using available GBS sequence for 20 clones. While skim se-
quence samples a random set of reads from across the genome,
GBS is a replicable set of markers that a sparsely sampled across
the genome. Imputation tests showed similar, but somewhat re-
duced accuracies using the PHG compared to Beagle (Figure 5A).
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It is important to note, however, that the PHG still had improved
accuracies in imputing heterozygous genotypes (Figure 5C).

The imputed genotypes from skim sequence were then uti-
lized in a genomic prediction scheme consisting of 57 cassava
clones (Supplementary Figure S4) from a single breeding

program. Clones were selected from a single breeding program to
minimize confounding factors such as population structure and
ensured an adequate level of heritability to assess genomic pre-
diction accuracy. Tenfold cross-validations and leave-one-out
validation showed that imputation accuracy generally appeared

Figure 3 Simulation methodology flowchart. Diagram of simulation scheme showing how simulated offspring were generated and used to test
imputation accuracy under ideal haplotype sampling scenarios.

Figure 4 Imputation accuracy from skim sequencing. (A) Displays correlation between imputed and true variants by imputing with the PHG and Beagle
at different levels of skim sequencing. (B) Displays concordance between true and imputed alleles at 1� coverage separated by alleles classes: minor,
heterozygous, and major (circle radius is equal to the proportion of alleles in each class). (C) Imputation accuracy at 1� coverage is shown for
homozygous genotypes separated by allele frequency of the true allele at that locus. (D) Imputation accuracy at 1� coverage is shown for heterozygous
genotypes separated by minor allele frequency at that locus.
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to follow the trends in genomic prediction accuracy, for fresh
root yield and root number, while no clear pattern was apparent
for the root size trait (Figure 6).

Phased haplotype PHG
We tested the viability of populating the PHG with haplotypes
phased by other methods. We compared the IBD method of sam-
pling phased haplotypes to two methods of phasing variants. The
first method used Beagle and HAPCUT2 to phase the variants
called from the HapMapII WGS data. The second method utilized
six cassava clones with ONP long-read data. The IBD and pre-
phased methods of populating the cassava PHG produced almost
identical accuracies (Figure 7). These results suggest that Beagle
and HAPCUT could not accurately phase heterozygous haplo-
types at this scale, and the accurate haplotypes are derived from
IBD haplotypes. While the PHG was made from six clones with
ONP data did perform as well as the other methods, it relied on a
far narrower set of germplasm. This suggests that accurate hap-
lotypes were likely captured using this method but lacked ade-
quate sampling to capture sufficient haplotypes.

Imputation simulation
Evident from the tests using haplotypes from IBD regions of the
genome, sampling phased haplotypes is a difficult aspect of cre-
ating an effective PHG in a heterozygous species. To explore the
performance of the PHG in a scenario where one could aptly

sample the diversity of haplotypes, we used simulated offspring
from a set of 20 phased genomes. While phasing errors exist, we
accepted these phases as truth for the simulation of offspring.
This ensured that all haplotypes present in the offspring exist in
the PHG database. We found that the disparity in accuracies be-
tween PHG and Beagle at high sequence coverage disappeared in
our simulation (Figure 8), while the trend in Beagle accuracy was
very similar to our empirical tests. While the simulation does rep-
resent an ideal scenario, including a narrower set of germplasm,
it highlights the performance of the PHG when accurately phased
haplotypes are available.

Discussion
We have detailed a method of implementing a PHG for the het-
erozygous plant species cassava. This PHG database utilizes
phased haplotypes to predict missing genotypes from low-depth
input sequence. Runs of homozygosity formed by IBD relation-
ships proved to be a reliable method of sampling phased haplo-
types given the available data (Figure 7). This method of
obtaining haplotypes, while not able obtain the full diversity of
alleles, captured 77% of common alleles and produced ample
haplotypes for significant imputation accuracy at very low se-
quence depth (Figure 4A).

The high accuracy of the PHG demonstrates its potential as an
imputation tool for use in heterozygous crops. The advantages of

Figure 5 Imputation accuracy from GBS sequencing. (A) Displays concordance between true and imputed alleles separated by alleles classes (circle
radius is equal to the proportion of alleles in each class). (B) Imputation accuracy is shown for homozygous genotypes separated by allele frequency of
the true allele at that locus. (C) Imputation accuracy is shown for heterozygous genotypes separated by minor allele frequency at that locus.
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the PHG imputation methodology are especially evident in its ac-
curacy at calling rare and heterozygous alleles (Figure 4, C and

D). Furthermore, the observed weaker relationship between allele
frequency and imputation accuracy, highlights its ability to pre-

dict rare alleles. Across both simulated and empirical experi-
ments, we found that the ability of the PHG to impute whole-

genome variants was consistent at or above 0.5� sequence cover-
age. The haplotype-based representation of the genome enables

this imputation methodology to overcome the logistical hurdles
such as those produced by sequencing and assembly errors, re-

petitive sequences, and poor alignments.
The plateau reached in imputation accuracy (Figure 4A) using

the PHG most likely indicates that we have not sufficiently sam-

pled the diversity of possible haplotypes. At sequence coverages

of 5� and higher, the raw data can produce the true genotypes

and little imputation of missing genotypes is occurring. The PHG

imputation is limited to predicting haplotypes that are already

present in the database, while Beagle can rely on the genotypes

called from the high depth (>1�) raw sequence, meaning that

there are much fewer missing data for Beagle to impute. This sce-

nario of high depth sequence is useful to diagnose challenges in

imputation, however it does not correlate to many real applica-

tions. The disparity between the PHG and Beagle at these high

coverages points to the presence of missing haplotypes in the

database, rather than any disparity in performance.
The hypothesis of missing haplotypes limiting imputation ac-

curacy is supported by a visible relationship between homozy-

gous incidence in our population and reference range imputation

accuracy (Supplementary Figure S5), suggesting that those ranges

with poor imputation accuracy were not amply sampled. The

length and abundance of the IBD runs of homozygosity in our

dataset likely determine the ability of the HMM to accurately pre-

dict haplotypes. There may be many factors that affect the preva-

lence of IBD haplotypes including recessive deleterious effects,

populations size, population diversity, and heterozygosity. We

saw that the disparity in imputation accuracy was remedied un-

der simulation, where all possible haplotypes were sampled in

the database (Figure 8). These results suggest that, although an

already powerful tool, the PHG achieves maximum performance

with sufficient sampling of available haplotypes.

Figure 6 Genomic prediction cross-validation. Tenfold cross-validation
(box) and single holdout cross-validation (line) show genomic prediction
accuracies of three root traits using different imputation methods at
varied sequence depths. Single holdout cross-validation using complete
genotype dataset is shown (dashed line).

Figure 7 Haplotype phasing methods in the PHG. Imputation accuracy is
shown for three different methods of populating a PHG. First, the IBD
PHG (red) was populated using homozygous haplotypes from the 241
HapMapII clones. Second, the Prephased PHG (Purple) used Beagle and
HPACUT2 to phase these same clones. Third, the ONP6 PHG (Yellow)
used ONP long reads and WhatsHap to phase six related taxa to the test
set.

Figure 8 Imputation accuracy with simulated genotypes. A simulated
scenario where 20 parents with full phased information are used to
populate a PHG. Correlation between imputed and true variants by
imputing with the PHG and Beagle at different levels of skim sequencing.
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Currently, the performance using GBS data appears to be simi-
lar between the PHG and Beagle (Figure 5). Imputation from re-
duced representation genotyping such as GBS is challenging due
to the sparse sampling across the genome and varied levels of se-
quence quality. Excellent imputation accuracy in inbred crops
Sorghum (Jensen et al. 2020) and Maize (Valdes Franco 2020) using
these genotyping methods highlights the potential benefits of the
PHG in these scenarios. Because reduced representation genotyp-
ing methods are likely the most commonly implemented, current
efforts are being made to improve heterozygous imputation using
these technologies. We expect improved haplotype sampling and
phasing to improve imputation accuracy for these genotyping
platforms. Further haplotype sampling paired with developments
in the PHG imputation methodology will likely improve imputa-
tion accuracy from these genotyping methods.

While the imputation accuracy of the PHG is limited based on
the haplotype sampling, its high accuracy with low levels of input
sequence highlights its potential for genomic applications, where
sparse genotyping is common. We showed that this is true re-
garding genomic prediction by performing cross-validations with
the imputed genotypes (Figure 3). The genomic prediction was
still limited by imputation accuracy, but by enabling higher accu-
racy we can achieve more reliable predictions (Pimentel et al.
2015; Wang et al. 2016; Van Den Berg et al. 2017).

With increased imputation accuracy from more limited geno-
typing inputs, a breeding program may be able to afford to cross
and genotype more offspring, enabling them to increase selection
pressure across their breeding pool. Similarly, imputation to
genome-wide scale can bridge gaps between different data sets
containing information on different marker panels, enabling the
use of larger datasets for prediction. Accurate imputation could
also enable breeders to utilize genomic prediction models that in-
corporate more prior functional information on genome-wide
variant effects into predictions, using methods such as GFBLUP
(Fang et al. 2017) or BayesR (MacLeod et al. 2016; Van Den Berg
et al. 2017). These possible applications of imputation have the
potential to increase total genetic gain made by breeding pro-
grams.

We show that while computational methods might not be able
to solve haplotype phasing with short-read data, long-read se-
quencing may be able to overcome that issue. The Prephased
PHG produced similar accuracies to the IBD method, suggesting
the additional haplotypes added by phasing why heterozygous
alleles using Beagle and HAPCUT were not accurate over long dis-
tances. While limited in scope, the ability of the PHG created
from six clones with ONP data suggests the potential application
of long reads for obtaining phased haplotypes. One could envi-
sion a breeding scenario in which parents are sequenced and
phased using long-reads and offspring are predicted from mini-
mal genotyping input using the PHG. Then every few generations
shallow WGS can be used to update the PHG and compensate for
changing LD structures.

Applying the PHG to cassava and other heterozygous crops
will depend on the ability to sample phased haplotypes within
the given population. We’ve shown that utilizing high depth WGS
data and IBD regions of the genome can be used to reliably sam-
ple many phased haplotypes, and that the resulting PHG can im-
pute with high accuracy from low-depth sequence. This method
of sampling haplotypes will be highly dependent on the diversity
and heterozygosity of the species and population for any given
application. Other necessary considerations for the decision to
use the PHG include genome size, reference genome quality,
training data availability, species ploidy. In applications where

imputation is commonly implemented, training data that can be

used to construct a PHG may already be available. Our long-read

data results show the potential for more easily capturing phased

haplotypes as these technologies become more available. Using

genome assemblies produced from long-reads as inputs to the

PHG has been shown to be very effective in Maize, while this

method has not been implemented in outbred species. The po-

tential for the PHG as a tool in heterozygous crops has been

shown here, while the specific methods to produce the phased

haplotypes will have to be designed around the target species

and scenario.

Conclusion
The PHG is a method to reduce a genome to a set of haplotypes.

We have shown that this method can be used to predict whole-

genome haplotypes in a heterozygous species from sparse geno-

typing information. Its high accuracy, especially in rare alleles, at

very low depths of skim sequencing makes it a potentially power-

ful imputation tool. Continued work in populating the PHG data-

base with confidently phased haplotypes will lead to a more

consistent prediction model across varied genotyping methods.

Data availability
Supplementary files and scripts used for the production and test-

ing of the cassava PHG can be found at https://bitbucket.org/

bucklerlab/p_cassava_phg. Genotype and phenotype data from

HapMapII (Ramu et al. 2017) were downloaded from cassavaba-

se.org. Support and methods for PHG implementation can also be

found at https://bitbucket.org/bucklerlab/practicalhaplotype

graph/wiki/Home. Raw ONP sequence data for this project are

available at NCBI BioProject ID PRJNA589272.
Supplementary material is available at G3 online
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