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Cellular processes mediated through nuclear DNA must contend
with chromatin. Chromatin structural assays can efficiently inte-
grate information across diverse regulatory elements, revealing the
functional noncoding genome. In this study, we use a differential
nuclease sensitivity assay based on micrococcal nuclease (MNase)
digestion to discover open chromatin regions in the maize genome.
We find that maize MNase-hypersensitive (MNase HS) regions
localize around active genes and within recombination hotspots,
focusing biased gene conversion at their flanks. AlthoughMNase HS
regions map to less than 1% of the genome, they consistently
explain a remarkably large amount (∼40%) of heritable phenotypic
variance in diverse complex traits. MNase HS regions are therefore
on par with coding sequences as annotations that demarcate the
functional parts of the maize genome. These results imply that less
than 3% of the maize genome (coding and MNase HS regions) may
give rise to the overwhelming majority of phenotypic variation,
greatly narrowing the scope of the functional genome.
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All cellular processes involving the nuclear DNA, including
transcription, recombination, and replication, must contend

with local chromatin states. Each of these processes can affect
phenotypic variation, either directly or through constraints on
natural selection. To date, humans and several model systems
with small genomes have had their chromatin landscapes well-
characterized (1–4). However, with a limited number of well-
studied large, complex genomes, many general principles relating
chromatin structure to genome regulation remain unknown.
Here, we examine the large genome of maize (Zea mays L.), a
model crop species. The importance of maize within international
agriculture motivates our central question: Which portions of the
genome contribute to quantitative trait variation? Several fea-
tures of maize biology, such as the capacity for large controlled
crosses, rapid decay of linkage disequilibrium (LD), high genetic
diversity, and substantial spacing between genes, make it an excel-
lent experimental system for pursuing this question.
Fine-scale characterization of the chromatin structural landscape

requires an assay that can distinguish accessible (open) from con-
densed chromatin at the nucleosomal to subnucleosomal scales. In
general, chromatin accessibility may be assayed through in situ
digestion of the nuclear DNA with a non-sequence-specific nu-
clease, followed by quantification of the resulting DNA fragments
(5). Micrococcal nuclease (MNase) cleaves DNA between nucle-
osomes, revealing genome-wide nucleosome occupancy (6, 7).
However, differential sensitivity to MNase digestion also reveals
chromatin accessibility, with genomic regions of open chromatin
preferentially recovered under light-digestion relative to heavy-
digestion conditions (8). In maize, a differential MNase sensitivity
assay with microarray quantification [differential nuclease sensitivity
(DNS)-chip] demonstrated that MNase hypersensitive (MNase HS)
regions are positively associated with gene expression levels, con-
served noncoding sequences, and known transcription factor bind-
ing sites (8). However, that study was limited to 11 Mb (0.5%) of
the maize genome. In this study, we use differential MNase sensi-
tivity and high-throughput sequencing (DNS-seq) to determine
whether the results in the microarray-targeted regions extend to the

entire genome and to test the genome-wide relationship between
chromatin structure and complex trait variation.
Here, we report that open chromatin regions are strongly as-

sociated with gene expression, epigenetic modifications, and
patterns of meiotic recombination. The genetic variants within
MNase HS regions consistently explain an unexpectedly large
proportion (40%) of the heritable variance in complex traits,
despite making up less than 1% of the maize genome. Given that
the remaining variance is primarily explained by the 2% of the
maize genome from protein coding regions, this study greatly nar-
rows the scope of the functional genome.

Results
MNase Hypersensitive Regions Surround Genes. To enhance the
genotype-phenotype map with chromatin structural data, we carried
out genome-wide DNS-seq mapping in nuclei from root and shoot
tissues of maize seedlings. The MNase HS regions, summarized in
Fig. 1, make up 0.6% of the genome. Tissue-specific comparisons
reveal considerable overlap between root and shoot MNase HS
regions (Fig. 1C). On a megabase scale, local MNase HS frequency
is strongly associated with recombination frequency (R2 = 0.55)
(Fig. 1A and SI Appendix, Fig. S1). We obtain a conservative esti-
mate for the total number of MNase HS regions by merging signals
within 150 bp, which is a nucleosome core length, of one another.
A total of 126,992 (17.0 Mb) distinct MNase HS regions occur in
shoot, and 89,455 (6.9 Mb) occur in root. Combined, these re-
gions cover 19.4 Mb. We measured sequence conservation by
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maximum likelihood scaling of the neutral phylogenetic tree with
GERP (9), such that scale values below 1 indicate higher conserva-
tion than expected under neutrality. Overall, sequence in MNase HS
regions is significantly, albeit slightly, more conserved than 180 bp
flanking regions everywhere except coding sequence (SI Appendix,
Fig. S2), indicating that purifying selection in MNase HS regions
is elevated with respect to the noncoding expectation, but remains
diffuse. Although slight differences in sequence conservation occur
between MNase HS sequences from different tissue types, differ-
ences in scaling factors are inconsistent between functional an-
notations and lower in magnitude than those between MNase
HS and non-MNase HS flanking regions (SI Appendix, Fig. S3).
Given the known role of chromatin structure in gene function,

we anticipated a close relationship between the distribution of
MNase HS and genes. On a broad scale (1 Mb), MNase HS
density positively correlates with gene density (Spearman rho =
0.64; P < 1 × 10−16) (Fig. 1B). Approximately 80% of MNase HS
regions occur outside genes, but they are highly enriched in genic
flanks (Fig. 1E). A second peak, ∼100 kb, in the MNase HS to
gene distance frequencies aligns with the overall genomic distri-
bution (Fig. 1E), and these may represent a mixture of gene distal
regulatory elements and additional gene proximal elements for
unannotated genes. Approximately 70% of all mapped MNase HS
sequences occur within the small (11%) portion of the intergenic
space that excludes transposable elements (TEs) (SI Appendix,
Table S1). Within and surrounding genes, averaged MNase HS
profiles show stereotypical patterns (Fig. 1D), with prominent
hypersensitivity just upstream of gene model transcription start
sites (TSSs). Approximately 25% of genes contain statistically sig-
nificant peaks in shoot or root MNase HS (Materials and Methods).

A prominent but broad HS peak, covering and extending beyond
the 3′ ends of transcript models, is evident, whereas coding and
intronic regions show much lower MNase HS.

MNase HS Is Associated with Gene Regulation. Using microarrays
spanning 1,688 genes, Vera et al., 2014 (8) showed that gene
expression levels and MNase HS strongly covary at TSSs. To
examine this relationship in a less-biased and genome-wide
manner, we sorted the 36,441 maize genes by their steady-state
mRNA levels and used heat map analysis to inspect MNase HS
profiles at the TSSs (SI Appendix, Fig. S4). We detect similar
numbers of expressed genes (reads per kilobase per million ≥
0.1) in shoot (n = 25,549) and root (n = 26,020) (SI Appendix,
Table S2). Gene expression levels and signal strength for MNase
HS regions show a clear genome-wide positive correlation around
TSSs. Tissue-specific expression patterns are recapitulated by
MNase HS signals, confirming that TSS chromatin profiling is
predictive of gene expression levels (Fig. 2). TSS-associated MNase
HS signals also discriminate between the expression levels of
paralogs from the most recent tetraploidization event 5–12 MYA
(10). Although large portions of the duplicated genome are dif-
ferentially expressed (11), the level of MNase HS matches gene
expression levels (SI Appendix, Fig. S5). These observations es-
tablish the relative signals of promoter MNase HS, possibly
reflecting the transcription rate, as one of the best epigenomic pre-
dictors of gene activity.

MNase HS Regions Are Associated with DNA Hypomethylation and
Recombination Hotspots. Heterochromatin in plants is usually dis-
tinguished by constitutive hypermethylation of symmetric CpG and

Fig. 1. The distribution of MNase HS regions in maize. (A) The frequency of MNase HS bases across the genome in 1-Mb windows, along with the re-
combination frequency. (B) The relationship between gene density and MNase HS density in 1-Mb windows. (C) The total sizes of MNase HS regions in the
root and shoot and the intersection of the two tissues. (D) MNase HS base frequency within and surrounding protein coding genes. Genic elements were
binned according to percentage of total element size, whereas upstream and downstream regions were binned in units of 10 bp. (E) The distribution of
distances to the nearest gene boundary for intergenic MNase HS bases (blue) and for all intergenic bases (green).

E3178 | www.pnas.org/cgi/doi/10.1073/pnas.1525244113 Rodgers-Melnick et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1525244113/-/DCSupplemental/pnas.1525244113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1525244113/-/DCSupplemental/pnas.1525244113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1525244113/-/DCSupplemental/pnas.1525244113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1525244113/-/DCSupplemental/pnas.1525244113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1525244113/-/DCSupplemental/pnas.1525244113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1525244113/-/DCSupplemental/pnas.1525244113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1525244113/-/DCSupplemental/pnas.1525244113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1525244113/-/DCSupplemental/pnas.1525244113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1525244113/-/DCSupplemental/pnas.1525244113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1525244113


CHG DNA methylation motifs, where H refers to any nucleotide
except G (12), so we expected localized symmetric methylation
reductions in HS regions. Plants also contain methylation at asym-
metric CHH motifs, which in maize are known to generally mark
sites of RNA-dependent DNA methylation (13), so we anticipated
elevated CHH methylation within TEs. However, we did not an-
ticipate a dramatic localized relationship of MNase HS regions with
CHH methylation. In support of reduced symmetric methylation
surrounding MNase HS regions, CpG methylation outside TEs is
reduced from a rate of 70% 2 kb away from the nearest MNase HS
site to 5% within the MNase HS region (Fig. 3). A similar reduction
occurs for CHG motifs. Likewise, a strong MNase HS-associated
hypomethylation tendency is seen within TEs, although the differ-
ence in CpG and CHG methylation is accompanied by a four times
increase in CHH methylation. Strikingly, CpG methylation in
coding regions differs from the general pattern in noncoding re-
gions. Coding CpG methylation is elevated within and directly
surrounding MNase HS sites, and stronger hypomethylation oc-
curs downstream, relative to upstream, of the MNase HS region.
In maize, meiotic recombination has a strong negative relation-

ship with CpG and CHG methylation (14), linking chromatin status
with crossover formation. Investigating this relationship, we find
significant and genomic context-specific MNase HS enrichment at
1–30-kb recombination hotspots relative to comparable, adjacent,
but nonhotspot regions. Although MNase HS is enriched threefold
to fourfold within hotspot TEs, twofold within hotspot non-TE
intergenic regions, and twofold within hotspot noncoding genic re-
gions, it is not enriched within the coding regions of recombination
hotspots (SI Appendix, Fig. S6A). The positive relationship between
MNase HS and recombination frequencies extends to gene-distal
regions, those >5 kb from the nearest gene, where we find a high
association (Spearman rho = 0.35; P < 1 × 10−16) for 1–10-kb bins
(SI Appendix, Fig. S7). Mean crossover enrichment in these 1–10-kb
bins is 16% higher (Wilcoxon rank sum test, P = 3.6 × 10−5)
for shoot-specific compared with root-specific MNase HS regions
(SI Appendix, Fig. S8).

Strong, Sustained GC-Biased Gene Conversion Surrounds MNase HS
Regions. In light of the association between seedling MNase HS
regions and recombination hotspots, we tested whether MNase
HS regions are also enriched for tracts of GC-biased gene con-
version. Conversion tracts arise when base mismatches at re-
combination junctions resolve in favor of G+C nucleotides
relative to A+T nucleotides (15, 16). We assessed the historical
influence of GC-biased gene conversion on the maize lineage,
using PHASTbias with an alignment of 12 monocots and eudi-
cots (17), although limiting the alignment to only grasses had no
significant effect (SI Appendix, Fig. S9). The mean probability of
biased gene conversion increases fivefold in the 2 kb surrounding
MNase HS regions (SI Appendix, Fig. S6B). Tract sizes are also
positively associated with MNase HS frequency within the tract
and the immediate flanking regions (Spearman rho = 0.107; P <
1 × 10−16). We find that the highest historical conversion fre-
quencies are located in 300 bp surrounding regions of HS tracts
within hotspot coding sequence (mean probability = 0.34) (Fig.
4B and SI Appendix, Fig. S10B). Hotspot MNase HS regions in
both coding and noncoding genic regions also show a 1.5- to
twofold increase in historical conversion frequency compared
with adjacent control regions. No similar increases occur within
intergenic regions (Fig. 4B). Thus, although hypersensitivity is
most enriched within hotspot noncoding regions, genic coding
regions have the highest conversion rates (Fig. 4B and SI Appen-
dix, Fig. S10B). Using a linear model of mean historical conversion
rate on crossover enrichment, MNase HS frequency, genic fre-
quency, and TE frequency in 1–10-kb windows (SI Appendix,
Table S3), we find that crossover enrichment consistently con-
tributes the most to explained variance (46%), followed by MNase
HS frequency (32%). Thus, MNase HS regions may contribute
to GC-biased gene conversion beyond their contribution to re-
combination frequency, perhaps through an increase in mismatch
repair-associated conversion resulting from an elevated mutation
rate. However, the errors associated with estimates of narrow
crossover enrichments in 5,000 recombinant inbred lines hinder
clear delineation of GC-biased gene conversion causes.
In general, the conversion pattern surrounding MNase HS

regions mirrors the trend toward increasing GC composition in
the flanking 1 kb (Fig. 4A and SI Appendix, Fig. S10A). Strikingly,
the GC content of putatively neutral coding sites increases to
nearly 80% in the few hundred base pairs flanking coding
MNase HS regions, whereas GC content within coding MNase

Fig. 2. MNase HS is associated with gene regulation. Mean MNase HS profiles
in root (red) and shoot (green) for genes divided into tertiles according to
expression levels within root and within shoot.
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HS regions is similar to that of MNase HS regions elsewhere
(50–60%). Moreover, GC content in all genic regions is notice-
ably increased downstream of MNase HS regions, with respect to
the direction of transcription (Fig. 4A).
The ongoing action of enhanced biased gene conversion in

coding regions immediately flanking MNase HS is supported by
derived allele frequencies being more skewed toward G/C vs. A/T
alleles (SI Appendix, Fig. S11). Using the approach of Glémin et al.
(18), we used the site frequency spectrum to estimate the current
GC-biased gene conversion intensity (B = 4Neb), where Ne is the

effective population size and b is the conversion bias intensity
(SI Appendix, Fig. S12). Intensity is greatest (B = 2.4) in the 100–
200 bp of coding sequence surrounding MNase HS within or
proximal to coding sequence, although conversion intensity within
the interior of coding MNase HS is also high (B = 1.9). Within
genic, noncoding sequence, conversion intensity is highest within
the MNase HS interior (B = 0.88), and it is also centered on
MNase HS tracts within gene distal regions of both TEs (B = 1.65)
and non-TE (B = 0.45) regions. Extending beyond current pop-
ulation conversion rates, higher historical substitution rates of A/T
to G/C vs. G/C to A/T in these same regions indicate localized
GC-biased gene conversion has remained a consistent evolution-
ary force (SI Appendix, Fig. S13). Although the mechanistic basis
for enhanced conversion frequencies is unclear, we find strong
associations with epigenetic marks. In particular, the frequency of
the histone modification H3K9me2 mirrors base content patterns
in both coding and noncoding portions of genes (Fig. 4A). In
contrast, H3K4me3 shows the same pattern in coding and non-
coding regions. Strikingly, the absence of H3K9me2 clearly sepa-
rates the high GC (∼80%) MNase HS-flanking regions from
flanking regions with comparable GC content to the MNase HS
interior (∼60%) (SI Appendix, Fig. S14). H3K4me3 has a much
smaller association with GC content in the opposite direction, and
both effects are significant in coding and noncoding segments.

MNase Hypersensitivity Marks Known Quantitative Trait Loci. Many
cloned maize quantitative trait loci (QTL) fall within nongenic
regulatory regions, prompting us to examine several cases of
intergenic QTL for possible underlying explanatory MNase HS
regions. The first case is the QTL associated with an expression
increase in teosinte branched1 (tb1), a domestication gene with
alleles for the single stalk form of modern field corn (19). Var-
iation in tb1 expression levels maps to genetic variation in a
region containing two TE insertions, Hopscotch and Tourist,
located ∼60 kb upstream of tb1. The presence of the proximal
Hopscotch element causes increased tb1 expression, whereas the
distal region containing Tourist represses expression (20). In-
triguingly, we observe MNase HS in the 730 bp between these two
TEs (Fig. 5A), possibly localizing a distal TE-modulated en-
hancer as the underlying tb1 domestication QTL. We note that
the Hopscotch element itself, too repetitive to measure, may
also contain MNase HS sequences.

B

Transcription Transcription

A Genic, Coding Genic, Non-coding

Fig. 4. GC-biased gene conversion strongly affects coding sequence content
surrounding MNase HS regions. (A) The frequency of G/C content and the his-
tone modifications H3K9me2 and H3K4me3 surrounding and within MNase HS
regions for coding and genic, noncoding (e.g., UTR, intron) sites. Base content for
coding sites is divided into invariant and neutral sites. Base positions are plotted
relative to the direction of transcription. (B) Mean ranges of GC-biased gene
conversion probabilities within MNase HS regions and regions 1–2 kb from the
nearest MNase HS region for both recombination hotspots and control regions
flanking recombination hotspots. Ranges correspond to 95% credible intervals.
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A second case involves the vegetative to generative transition
1 (vgt1) QTL, associated with altered expression of a maize
flowering-time repressor gene, AP2 domain transcription factor,
ZmRap2.7. Insertion of a miniature inverted-repeat transposable
element (MITE) into conserved noncoding sequence in the QTL
is associated with reduced expression of ZmRap2.7 and early
flowering time (21, 22). Correspondingly, we observe a strong
MNase HS signal overlapping the MITE insertion point (SI
Appendix, Fig. S15A). Finally, a third case involves the pro-
lificacy1.1 (prol1.1) QTL, found to contain several prominent
MNase HS regions (SI Appendix, Fig. S15A). This QTL is pre-
sumed to contain a cis-regulatory element that increases ex-
pression of grassy tillers1 (gt1), a gene that acts to suppress
secondary ear outgrowth (23). These examples reveal the po-
tential for chromatin structural data to narrow the focus from
∼100-kb windows to small intervals as a means to help identify
actual enhancers near genes.

MNase HS Regions Explain Quantitative Traits. To more globally test
the relationship between MNase HS and complex trait variation,
we quantified the enrichment of genome-wide association study
(GWAS) hits across 41 traits within 2 kb of MNase HS regions.
We find twofold enrichment of GWAS hits in MNase HS
proximal regions (95% credible interval, 1.73–2.16) compared
with adjacent regions at least 2 kb away from the nearest MNase
HS site (Fig. 5B). Furthermore, this enrichment is nearly un-
changed as a function of distance to the nearest gene (Fig. 5B),
revealing comparable MNase HS efficacy for mapping func-
tionally significant genomic loci in gene-proximal versus gene-
distal regions. To further investigate the role of open chromatin
in complex organismal trait variation, we partitioned the heritable
phenotypic variance into annotation-specific components using
methods previously applied to human variation (24). We classified
SNPs into coding (CDS), MNase HS, 5′ UTR, 3′ UTR, intronic,
and intergenic regions, in that order of priority. A genetic re-
lationship matrix was constructed for each SNP set, allowing for
jointly estimated heritability explained by genetic variation

within each annotation. We examined the United States nested
association mapping (US-NAM) population, a set of 5,000
recombinant inbred lines from B73 × 25 diverse inbreds in
controlled crosses. We found that the CDS explains the highest
proportion of heritable variance (mean = 47.6%) for traits with
moderate to high heritability (h2 > 0.4), whereas MNase HS
regions explain a remarkably large majority of remaining variance
(mean = 39.3%) (Fig. 6C). This 18× enrichment of variation at-
tributed to SNPs within MNase HS (Fig. 6A) is comparable to that
(16×) for CDS SNPs. Similar results, 21× enrichment for MNase
HS SNPs, are obtained from variance partitioning of flowering
time and plant height phenotypes of a different mapping popu-
lation, the Ames Diversity Panel (Fig. 6 B and D). Splitting variance
among MNase HS categories, we find that the largest contri-
bution of MNase HS heritability is intergenic for both mapping
panels (SI Appendix, Fig. S16).
Considering the MNase HS variance in shoots versus roots, we

expected that the shoot chromatin profiles might better explain
trait variation because of the aboveground nature of the measured
phenotypes. Indeed, shoot-only MNase HS regions explain an
average of 60% (US-NAM panel) or 75% (Ames panel) of the
MNase HS heritable variance, whereas the root-only regions ex-
plain less than 20% (SI Appendix, Fig. S17 C and D). However,
given the different sizes of the SNP sets within each tissue cate-
gory, the level of enrichment varies. In US-NAM, the MNase HS
regions common to both root and shoot show the most enrichment
(24×) compared with those unique to shoot (19×) or root (16×). In
the Ames panel, the MNase HS regions unique to shoot show the
most enrichment (26×) compared with those either unique to root
(23×) or common to both (8.3×) (SI Appendix, Fig. S17 A and B).
Several types of reliability testing for variance partitioning

were performed. We note that SNP error rates do not appear to
bias the observed results, as revealed by a lack of enhancement
of SNP quality scores among MNase HS SNPs relative to SNPs
from other categories (SI Appendix, Fig. S18D). In addition, little
to no variance components are allocated to all SNP sets when
phenotypes are permuted both within and between families,

A B

C D

Fig. 6. MNase HS regions explain nearly half of quantitative trait variation. (A and B) The enrichments of variance in functional categories within (A) US-NAM
and (B) Ames Diversity Panel (C and D) The average contributions of SNPs with the given annotations to heritable variance and the partitioning of variance to
individual traits within (C) US-NAM and (D) Ames Diversity Panel. Exploded slices in the pie charts denote the MNase HS.
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another sign of unbiased categories (SI Appendix, Fig. S1C). As a
test of robustness to patterns of LD, we tested partitioning with
the separate category of intergenic SNPs 2–5 kb away from the
nearest MNase HS region. This category explains little herita-
bility in either population (SI Appendix, Fig. S19 A and B). We
also reversed the order of annotation priority in SNP classes, but
obtained essentially the same results for the Ames panel, but
with more variance allocated to the UTRs within the US-NAM
panel for several phenotypes (SI Appendix, Fig. S19 C and D).
Finally, we performed variance partitioning on 250 simulated
phenotypes for each annotation, in which only SNPs within that
annotation contributed to phenotypic variance. Using this method,
for which we know causal locations, we find that most variance is
unambiguously allocated to the correct SNP set in both pop-
ulations (SI Appendix, Fig. S18 A and B).

Discussion
In this study, we demonstrate that relatively open chromatin
structure, mapped with MNase HS profiling, marks functionally
important regions that link genotype to phenotype. MNase HS
regions delineate molecular phenotypes such as recombination
breakpoints, enhancers, and other possible remote controllers of
gene expression. We demonstrate how to use MNase HS regions
as epigenomic annotations to resolve the variation underlying
organism-level quantitative traits at high resolution.
We observe more MNase HS sites, in both number and total

coverage, for the shoot compared with the root sample. The ele-
vated signal in the shoot may reflect its greater overall tissue
complexity with respect to cell type differentiation and develop-
ment potential (reviewed in ref. 25). Moreover, the seedling har-
vest time coincided with major shoot developmental events,
including the onset of autotrophy, the juvenile to adult vegetative
phase change, and the genome-wide epigenetic change coupled to
transposon expression and gene silencing pathways (26). Taken
together, the detection of more open chromatin in shoots versus
roots is likely reflective of more numerous genomic activities
distributed across the genome, collectively measured by DNS-seq.
Regarding gene regulation, we find a prominent and consistent

positive relationship between gene expression and chromatin ac-
cessibility surrounding the TSS. The strength of this relationship is
so strong that one might be able to predict transcription rates
directly from the DNS profiles without measuring transcript levels.
However, three possible scenarios are considered in which the
promoter DNS signals and transcript abundance could appear to
be uncoupled, yet maintain the DNS–transcription rate relation-
ship on a per cell basis. In one case, genes exhibiting low promoter
MNase HS signals may produce high mRNA levels, a pattern that
could result from a gene that is very highly expressed in a small
proportion of cells. In a contrasting case, a gene with high promoter
MNase HS signals may produce low mRNA levels, a pattern that
could result from high, posttranscriptional mRNA turnover. How-
ever, another case could involve the mapping of MNase HS regions
to the wrong gene, as might occur at promoters from nearby genes.
Overall, however, most genes clearly show a robust positive re-
lationship between RNA abundance and promoter MNase HS
signals, likely related to transcriptional initiation and its depen-
dence on open chromatin.
DNA methylation rates also closely mirror the chromatin ac-

cessibility landscape. Cytosine hypomethylation of open chromatin
is common across eukaryotes, as reduced methylation within CpG
contexts occurs in plants and animals (1, 4, 27). In contrast to the
ubiquitous hypomethylation of cytosines in symmetric motifs, we
observe a twofold to fourfold increase in CHH methylation in the
region immediately surrounding and MNase HS regions in TEs.
CHH hypermethylation within DNaseI HS regions was previously
observed within Arabidopsis thaliana (27), and it co-occurs with
accessible chromatin in the RNA-dependent DNA methylation-
targeted regions of maize (13). Given that RNA-dependent DNA

methylation requires active transcription of siRNAs, MNase HS
regions may universally mark transcriptionally active DNA, in-
cluding regions coupled to genomic silencing pathways.
Beyond gene expression, we find compelling evidence that

open chromatin marks recombination hotspots. This relationship
differs from that in humans, where PRDM9 marks the locations
of recombination hotspots but without a strong relationship to
open chromatin (28, 29). An unexpected finding with possible
implications for mechanisms of recombination in plants is the
relationship between open chromatin and GC-biased gene con-
version. In coding sequence, where we observe the highest con-
version rates, the allele frequencies of derived neutral alleles
with conversion advantages are increased nearly 2.5-fold above
those of disfavored alleles. Moreover, the patterns of substitu-
tion within the phylogeny indicate that GC-biased gene conver-
sion has remained a consistent, localized force around MNase
HS regions. This situation differs from that in humans, where the
high conversion sites are inconsistent between populations and
species (18), likely because of the rapid evolution of PRDM9
motifs (30). Because GC-biased gene conversion imposes a fit-
ness-independent selective force, slightly deleterious alleles may
become fixed if their selective disadvantages are sufficiently less
extreme than their conversion advantages (31). Indeed, GC-biased
gene conversion may increase disease burden in humans by up to
60% (32). However, high levels of GC-biased gene conversion
may also favor increased heterosis when deleterious mutations
are highly recessive (33). Our estimates of the population con-
version intensity indicate that GC-biased gene conversion is
strong enough to overcome genetic drift, especially within coding
regions. Therefore, this localized, nonadaptive force may substan-
tially increase maize genetic load and contribute to the heterotic
patterns observed in breeding germplasm through complementa-
tion of these deleterious variants.
The mechanistic basis of conversion rate differences in coding

versus noncoding genic sequence is unknown. One possibility is
that optimal codon selection increases GC content in coding
regions. However, codon selection does not explain the conver-
sion bias localizing around MNase HS regions, specifically those
lacking H3K9me2. If the same recombination-promoting mech-
anisms occur in coding and noncoding segments, the differences
in base content may result from histone mark stability over deep
evolutionary time within coding sequence. The support for any
direct relationship between H3K9me2 and recombination is
nonetheless tenuous. In A. thaliana, knockout of DNA poly-
merase α causes localized reduction of H3K9me2 and concom-
itant increases in recombination frequency (34). H3K4me3 also
correlates with meiotic recombination hotspots in A. thaliana
(35), and from our results, shows a slight positive relationship to
recombination in maize. However, one or more chromatin marks
correlated with those we assayed; for instance, H2A.Z, which is
strongly associated with A. thaliana hotspots (35), could be the
causative factor. The interrelationships among chromatin struc-
ture, epigenetic marks, and recombination control remain largely
undefined, but their investigation bears on evolutionary para-
digms and agricultural breeding strategies.

Relationship to Quantitative Traits. We observe consistent, robust
relationships between genetic variation in MNase HS regions
and complex trait variation, establishing an epigenetic frame-
work for the discovery and analysis of enhancers and other ge-
nome-wide regulatory sites. As a group or genomic annotation,
MNase HS regions represent a promising collection of gene
regulatory candidates underlying quantitative loci, including long-
distance expression QTL. Several lines of evidence support this
idea. First, MNase HS regions colocate with several well-studied
intergenic QTL previously fine-mapped as regulatory regions: tb1,
vgt1, and prol1.1. Notably, for these intergenic QTL, B73 has the
high expression alleles. Alternate lines with structural variation
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corresponding to the less-expressed alleles may lack the same
open chromatin signals as a result of structural disruption or
epigenetic modification such as heterochromatin spreading. Com-
parative genomics using MNase HS regions will become in-
creasingly feasible as multiple other maize inbred lines (haplotypes)
are sequenced. Second, the relationship of MNase HS regions to
functional polymorphisms is supported by the enrichment of
GWAS SNPs within the proximity of MNase HS regions. A
previous study of maize quantitative traits found evidence for
significant GWAS hit enrichment in gene-proximal intergenic
regions (36). However, GWAS studies can only provide evidence
for causal variants in LD with tagged SNPs, so nearby genic
causal variants cannot be dismissed. In contrast, our results show
twofold GWAS hit enrichment near open chromatin, regardless
of genic proximity. This twofold enrichment is smaller than the
∼20-fold enrichment for explained variance from partitioning
analysis. Two nonexclusive explanations may explain this discrep-
ancy. First, the stochastic history of mutation and recombination
will produce inconsistent GWAS resolution, blurring the true lo-
cation of causal mutations. Second, the relationship of GWAS
hit quantity to explained variation depends on the distribution
of allelic effects, possibly skewed toward larger values in open
chromatin.
Our findings show that SNPs within MNase HS regions ex-

plain ∼40% of the heritable variance of quantitative traits in
multiple maize mapping populations. The scale and scope of this
finding are remarkable, and thus worthy of considerable scrutiny,
prompting us to examine the robustness and validity of our re-
sults. First, we note that the pattern of relative contributions
to heritability is consistent across traits and populations. The
US-NAM panel of 5,000 lines from controlled crosses between
26 diverse founders results in large linkage blocks that permit
complete imputation of SNPs. The other population, a non-
designed diversity panel, contains high amounts of missing data,
but both populations benefit from the comparably rapid rate of
LD decay in maize (37, 38). Using permutation testing and
simulated phenotypes based on empirical genotypes, we show
that the high variance apportioned to MNase HS and CDS re-
gions is not explained by intrinsic bias toward these sites. SNPs
outside of a given annotation class can inflate its contribution if
they explain heritability and closely flank the annotation of in-
terest (24); however, we find no evidence for such distortion
when comparing intergenic MNase HS regions with those from a
subset 2–5 kb from the nearest MNase HS region. Nonetheless,
the considerable structural variation within maize invites the
possibility that MNase HS-proximal indels, rather than genetic
variants within the HS region, are often the causal polymor-
phisms behind the explained variance. Future studies of interline
MNase HS variation will therefore focus on the relationship
between chromatin state, structural variation, and QTL.
Although we observe a large phenotypic contribution from the

MNase HS portion of the genome (40% of heritable variance),
this value is only half the heritable variance explained by DNaseI
HS regions for 11 human diseases (24). However, as a percent-
age of the genome, the MNase HS regions in the current study
cover more than 50-fold less sequence than the human DNaseI
regions. Although the plant genomes currently lack open chro-
matin profiling data as extensive as that for the human ENCODE
project (39), the results of this study, along with previous genomic
DNaseI HS profiles of rice and A. thaliana chromatin (3, 4, 27),
suggest that the genome-wide extent of open chromatin in plants
may not substantially scale with increasing genome size. Further-
more, DNase I HS profiles in animals are increasingly shifting
from hypersensitivity to general sensitivity, further complicating
the definition, let alone comparison, of the distributions of
chromatin states across kingdoms. Given that our results sup-
port intergenic functional variation explained almost exclu-
sively by open chromatin, these chromatin accessibility assays in

plants are, a priori, at least as informative as protein-coding
regions when defining the functional genome.
In summary, we show how DNS mapping can be used to de-

lineate the functional portion of a large, complex genome, using
maize as a model genetic system. Biochemical DNS footprints
produced in situ are highly localized, and maize offers both a low
LD and extensive structured mapping populations. Combined,
these organismal and experimental attributes allowed us to
measure the effects of local chromatin structure on heritable
phenotypic variation at an unprecedented depth and breadth,
using only seedling shoot and root tissues of one genotype. Fur-
thermore, we illuminate the relationship of open chromatin to
recombination, opening the door for future studies into the tar-
geting of crossovers and the evolutionary consequences of strong,
consistent GC-biased gene conversion. In agriculture, epigenomic
profiling with DNS-seq can strategically guide the predictive ac-
curacy of genomic selection, narrow candidate regions for exper-
imentation with reverse genetics, and define the functions of
intergenic chromatin toward organismal fitness. Overall, DNS pro-
filing has multiple applications ranging from predicting transcription
rates and recombination sites to defining enhancers and QTL
candidates. As a genomic annotation, they bring an invaluable
resource to bear on biological, agricultural, and societal problems,
including contemporary and future challenges related to popu-
lation growth and climate change.

Materials and Methods
Plant Material. Seeds from the maize (Zea mays L., cultivar B73) were
obtained from field-grown ears from the Buckler laboratory at Cornell
University. Seeds were germinated in Fafard Seedling Mix in the greenhouse
(Department of Biological Science, Florida State University). Tissue was
harvested at 11:00 AM-12:00 PM, 9 d after planting. Shoot tissue was har-
vested by cutting and collecting the tissue just above the soil line, and root
tissue was harvested by rapidly rinsing the root system in water and cutting
off the kernel-attached roots. Harvested tissues were immediately flash
frozen in liquid nitrogen and stored at −80°C.

Nucleus Isolation and Digestion. As modified from Vera et al. (8), ten grams of
tissue were ground under liquid nitrogen with a mortar and pestle and
cross-linked by stirring for 10 min in 100 mL ice-cold fixation buffer (15 mM
Pipes·NaOH at pH 6.8, 0.32 M sorbitol, 80 mM KCl, 20 mM NaCl, 0.5 mM
EGTA, 2mM EDTA, 1 mM DTT, 0.15 mM spermine, and 0.5 mM spermidine)
containing 1% formaldehyde. Fixation was stopped by adding glycine to
125 mM. Nuclei were isolated by adding Triton X-100 to 1% final by addition
of 0.1 vol of a 10% (vol/vol) Triton X-100 stock, followed by stirring for
10 min. The suspension was filtered through one layer of Miracloth (Cal-
biochem) and placed in 50-mL centrifuge tubes. In these centrifuge tubes,
35 mL nuclear suspensions were underlaid with 15 mL Percoll cushion com-
posed of 50% (vol/vol) Percoll (GE) in BFA. Nuclei suspensions were centri-
fuged at 3,000 × g for 15 min at 4°C. The nuclei at the Percoll interface were
transferred to a 50-mL tube and diluted twofold with MNase digestion
buffer (50 mM Tris·HCl at pH 7.5, 320 mM sucrose, 4 mM MgCl2, and 1 mM
CaCl2). Nuclei suspensions were centrifuged at 2,000 × g for 10 min at 4°C,
and nuclei pellets were resuspended in 2.5 mL MNase digestion buffer.
Nuclei were aliquoted into 500-mL aliquots, flash frozen in liquid nitrogen,
and stored at −80°C. Nuclei were thawed at room temperature and digested
by adding MNase to 10 U/mL (light) or 100 U/mL (heavy), and incubated at
room temperature for 5 min. Digestions were stopped with 10 mM EGTA.
Nuclei were de-cross-linked by incubation overnight at 65°C in the presence
of 1% SDS and 100 μg/mL proteinase K. DNA was extracted by phenol-
chloroform extraction followed by EtOH precipitation. Digested DNA was
resuspended in 40 μg/mL RNAse A and electrophoresed in a 1% agarose gel.
DNA fragments smaller than 200 bp were excised and gel extracted after
ethidium bromide staining with the Qiaex II gel extraction kit (Qiagen),
following the manufacturer’s instructions.

Library Preparation and Sequencing. After nuclei isolation and digestion, gel-
extracted DNA was used to prepare sequencing libraries using the NEBNext
Ultra DNA Library Prep Kit for Illumina (NEB), using manufacturer instruc-
tions. Indexed libraries were pooled and sequenced on eight Illumina HiSEq
2500 lanes with paired-end 50-cycle sequencing. Short-read data are de-
posited in the NCBI short read archive (SRP064243).
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Read Assembly and Calling of Hypersensitive Sites. After the computational
trimming of adaptor sequences using CutAdapt (40), paired-end reads were
mapped to the maize B73 AGPv3 reference genome, using Bowtie2 with options
“no-mixed,” “no-discordant,” “no-unal,” and “dovetail” (41) for each replicate
digest and for the genomic DNA. BED files were made from the resulting BAM
files, using bedtools bamtobed, filtered for minimal alignment quality (≥10), and
read coverage in 10-bp intervals was calculated using coverageBed (42). The DNS
values were obtained by subtracting the mean normalized depth (in reads per
million) of the heavy digest replicates from those of the light digest repli-
cates. In this way, positive DNS values correspond to MNase hypersensitive

footprints (as defined by ref. 8; and referred to here as MNase HS regions),
whereas negative DNS values correspond to nuclease hyper-resistant foot-
prints (MRF, as per ref. 8). A Bayes factor criterion was used to classify as
significantly hypersensitive.
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