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Abstract 
Protein thermostability is important for fitness but difficult to measure across the 

proteome. Fortunately, protein thermostability is correlated with prokaryote optimal 
growth temperatures (OGTs), which can be predicted from genome features. Models 
that can predict temperature sensitivity across the prokaryote-eukaryote divide would 
help inform how eukaryotes adapt to elevated temperatures, such as those predicted by 
climate change models. In this study we test whether prediction models can cross the 
prokaryote-eukaryote divide to predict protein stability in both prokaryotes and 
eukaryotes. We compare models built using a) the whole proteome, b) Pfam domains, 
and c) individual amino acid residues. Proteome-wide models accurately predict 
prokaryote optimal growth temperatures (r2 up to 0.93), while site-specific models 
demonstrate that nearly half of the proteome is associated with optimal growth 
temperature in both Archaea and Bacteria. Comparisons with the small number of 
eukaryotes with temperature sensitivity data suggest that site-specific models are the 
most transferable across the prokaryote-eukaryote divide. Using the site-specific 
models, we evaluated temperature sensitivity for 323,850 amino acid residues in 2,088 
Pfam domain clusters in Archaea and Bacteria species separately. 59.0% of tested 
residues are significantly associated with OGT in Archaea and 75.2% of tested residues 
are significantly associated with OGT in Bacteria species at a 5% false discovery rate. 
These models make it possible to identify which Pfam domains and amino acid residues 
are involved in temperature adaptation and facilitate future research questions about 
how species will fare in the face of increasing environmental temperatures. 
 

Introduction 
Understanding what makes a species resistant to heat stress starts with the 

proteome because high temperatures affect protein biochemistry, folding, and function 
(Fields et al. 2015; Laye et al. 2017; Ritchie 2018; Hait et al. 2020). Extreme 
temperatures can reduce enzyme stability and cause protein denaturation and 
aggregation in the cell. Protein denaturation is a problem because aggregated proteins 
can become cytotoxic, and because protein metabolism is energetically expensive. If 
proteins are too unstable, even minor increases in temperature can cause protein 
denaturation and force the cell to devote extra energy to protein synthesis and 
recycling. As a result, stable proteins confer a substantial fitness benefit to their host 
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(Geiler-Samerotte et al. 2011; Goff 2011; Lynch and Marinov 2015). By comparing 
protein thermostability across species, we can gain insights into how species adapt to 
high temperatures and facilitate questions about how climate change might affect 
evolution at the molecular level. 

Protein stabilities in the cell follow a distribution; the average protein is relatively 
stable, but there is a tail of unstable proteins that are prone to denaturation. In fact, as 
much as 15% of the proteome may be composed of proteins that are only stable across 
a temperature range of less than 5 degrees Celsius (Ghosh and Dill 2010). These 
marginally-stable proteins likely exist because of constraints on protein evolution. 
Evolution favors protein conformations that avoid complete unfolding, but purifying 
selection is too weak in most proteins to avoid conformations that are only marginally-
stable (Razban et al. 2021). The strength of purifying selection is related to protein 
expression. Because protein metabolism is energetically expensive, highly-expressed 
proteins tend to be more stable than proteins with low or moderate levels of expression 
(Leuenberger et al. 2017).   

Extensive studies into each protein would make it possible to predict which 
amino acid residues are most important for stability and predict how changing one or 
more residues would affect protein stability. Experimentally determining amino acid 
substitution effects in such a comprehensive way is, however, still too time- and 
resource-intensive to apply across an entire proteome. Fortunately, evolution has 
already run billions of independent experiments to determine which amino acid 
substitutions increase protein thermotolerance and organism fitness. Over time, minor 
residue changes compound to alter intramolecular interaction networks and adapt 
protein temperature sensitivity in response to the environment (Gu and Hilser 2009; 
Heizer et al. 2011). Comparing residue changes across species adapted to different 
temperatures can provide insights into how the observed amino acid mutations affect 
protein stability (Holland et al. 1997; Fields et al. 2006; Lockwood and Somero 2012). 

Prokaryotic species have short generation times and have adapted to a wider 
range of optimal temperatures than eukaryotes, which makes them good species in 
which to study protein thermostability. They also have effective population sizes on the 
order of 108-109, which means selection can act more efficiently in these species than in 
most eukaryotes (Clarke 2014; Bobay and Ochman 2018). As an added benefit, there 
are a large number of prokaryote species with available genome and proteome 
sequences that can be used to develop models of protein temperature sensitivity. 
Prokaryote optimal growth temperatures (OGTs) can be predicted using genome 
features, and OGT is known to correlate with proteome temperature sensitivity 
(Saelensminde et al. 2007; Zeldovich et al. 2007; Dehouck et al. 2008; Gu and Hilser 
2009; Jensen et al. 2012; Meruelo et al. 2012; Aptekmann and Nadra 2018; Li et al. 
2019; Sauer and Wang 2019; Cimen et al. 2020). OGT predictions from tRNA 
sequences provide protein-independent estimates of temperature sensitivity that can 
then be used to evaluate protein thermal stability (Cimen et al. 2020).  Models built with 
prokaryotic protein data that can be applied to predict eukaryotic protein thermal 
stabilities would help explain eukaryotic molecular adaptation to high temperatures. 
Models that can identify temperature-sensitive amino acid residues would make it 
possible to ask questions about how and why individual amino acids affect protein 
thermostability.  
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Evolutionary constraints on protein metabolism are consistent across 
phylogenetic domains, as is biochemistry (Camps et al. 2007; Harms and Thornton 
2013; Venev and Zeldovich 2018). We hypothesize that this shared biochemistry will 
make it possible to also share information about protein stability across species 
separated by large evolutionary time scales. Residue chemistry and protein stability 
estimates may be consistent and predictable across the prokaryote-eukaryote divide. 
With this in mind, we set out to understand whether protein sequence features can be 
used to compare protein temperature sensitivity across all domains of life and provide 
insights into eukaryotic protein adaptation. Because protein structures are only available 
for a subset of proteins, we opted to restrict our model inputs to features of primary 
sequence. We developed models that test the transferability of a) proteome-wide 
sequence features, b) Pfam domain sequence features, or c) features of single amino 
acid residues. Our models are built and tested on a dataset of ~13.8 million proteins 
from 4,832 species across all three domains of life spanning more than 3 billion years of 
evolution (Battistuzzi et al. 2004; Hug et al. 2016). 

  
 

Results 
Proteome amino acid composition predicts OGT in prokaryotes, but not eukaryotes  

 4,827 Archaea and Bacteria species were evaluated to see if there is a 
relationship between proteome amino acid content and optimal growth temperature 
(OGT). Consistent with previous studies, we find that prokaryotic OGT can be predicted 
by amino acid composition in the proteome (Zeldovich et al. 2007; Dehouck et al. 2008; 
Jensen et al. 2012; Sauer and Wang 2019). We find that the accuracy of OGT 
predictions depends on which species are used to build the model and that Pfam 
domain regions of the protein are the most predictive. When the model is built using 
Archaea species, accuracy reaches r2 values up to 0.37 but overestimates Bacteria 
OGTs (Figure 1A, Table 1). The coefficient of determination between true OGT and 
predicted OGT is highest when the model is built with Bacteria species (r2 up to 0.93), 
but this model tends to underestimate Archaea OGTs (Figure 1B, Table 1). The most 
predictive models (with both high r2 and low RMSE) come from using a random sample 
of both Archaea and Bacteria amino acid frequencies. The maximum r2 from these 
models is 0.82, and the root mean square error (RMSE) is only 4.6℃ (Figure 1C, Table 
1).  
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Figure 1: Performance of global models using amino acid proportions across the whole 
proteome. A) Model built with Archaea species and applied to Bacteria species. B) Model built 
with Bacteria species and applied to Archaea species. C) Model built with 80% of all data and 
applied to a held-out 20%. Red lines show the point where the true OGT values match predicted 
OGT values.  
 

Table 1: Global model performance when trained with Archaea, Bacteria, or a combined 
dataset and tested on the remaining set of prokaryote species. 

  Dataset 

  Whole Proteome Pfam Domains Non-domain Regions 

Training 
Data 

r2 RMSE ρ r2 RMSE ρ r2 RMSE ρ 

Archaea 0.325 8.9 0.481 0.366 8.1 0.473 0.329 9.4 0.489 

Bacteria 0.909 11.9 0.829 0.926 9.4 0.816 0.893 15.0 0.833 

Both 0.780 5.0 0.643 0.815 4.6 0.658 0.717 5.7 0.601 

 

Transferability within prokaryotes depends on whether Archaea or Bacteria data 
is used as the training dataset and is highest when only Pfam domain amino acid 
composition is used (Figure 2A). However, models that use proteome-wide amino acid 
frequencies cannot predict temperature sensitivity in eukaryotes, and achieve an 
average r2=0.03 (Figure 2B, Table 2). These models are not, therefore, helpful for 
understanding eukaryotic protein adaptation to high temperature. 

 
 

 
 
Figure 2: Global amino acid models accurately predict prokaryote optimal growth temperatures, 
but not eukaryote optimal temperatures. A) Model r2 in prokaryotes; B) model performance 
when applied to six eukaryote species. Colors in both plots reflect the type of input data used: 
yellow = Pfam domain regions of the proteome, blue = non-Pfam domain regions of the 
proteome, green = whole proteome. Transferability was tested for six eukaryotic species 
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(Caenorhabditis elegans, OGT=20℃; Arabidopsis thaliana, OGT=25℃; Danio rerio, OGT=28℃; 
Drosophila melanogaster, OGT=28℃; Saccharomyces cerevisiae, OGT=30℃; Mus musculus, 

OGT=37℃; eukaryotic OGTs from Jarzab et al. 2020). 
 

Table 2: Global model performance when applied to eukaryotic species. 
 

  Dataset 

  Whole Proteome Pfam Domains Non-domain Regions 

Training 

Data 
r2 RMSE ⍴ r2 RMSE ⍴ r2 RMSE ⍴ 

Archaea 0.042 18.5 -0.348 0.026 12.5 -0.203 0.035 20.5 -0.348 

Bacteria 0.016 15.8 -0.348 0.046 16.6 -0.348 0.019 14.3 -0.348 

Both 0.017 15.3 -0.348 0.046 16.8 -0.348 0.023 15.1 -0.348 

 
Pfam domains explain temperature sensitivity with variable transferability 

Because the most accurate global model uses Pfam domain amino acid 
frequencies, we asked whether individual Pfam domains can be used to predict protein 
temperature sensitivity. Pfam domains were identified in each prokaryote proteome and 
separated into clusters based on k-means clustering of sequence features. 5,283 Pfam 
domains were identified in prokaryotes and were separated into 2-12 sequence clusters. 
A ridge regression model was built for each Pfam domain cluster and tested to see how 
well it could predict prokaryote OGT or eukaryote protein melting temperatures. 

There is a range of prediction accuracies within prokaryotes. As with the global 
models, a joint dataset containing both Archaea and Bacteria data performs best. There 
were 16,158 unique Pfam domain clusters that could be modeled, resulting in an 
average model r2=0.30 when using the combined Archaea and Bacteria dataset. In this 
combined dataset, 80% of the data in each Pfam domain was randomly selected and 
used to build the model and the remaining 20% was held out to evaluate model 
performance. Fewer Pfam domains could be compared when models were built with 
only Archaea or only Bacteria species’ data due to the small number of available 
Archaea species. In both cases, models were built with one phylogenetic domain and 
accuracy was determined by predicting OGT for the other phylogenetic group (e.g. 
models were built using Archaea OGTs and Pfam domains were then evaluated based 
on their ability to predict Bacteria OGTs). In total, 2,619 Pfam domain clusters were 
tested and compared across these two phylogenetic domains. Models built using 
Bacteria data had an average r2=0.20 when used to predict Archaea OGTs, while 
models built using Archaea data achieved only r2=0.02 when used to predict Bacteria 
OGTs (Figure 3A; Table 3).  

The same models were then applied to eukaryotic species to see whether they 
could effectively transfer information across the prokaryote-eukaryote divide. These 
Pfam domain models transfer to eukaryotic species better than global amino acid 
frequency models and are able to predict eukaryotic protein melting temperatures (Tm) 
with average r2 = 0.34-0.38 (Figure 3B). However, none of the correlations are 
significant at an FDR significance threshold of 0.05 and Spearman’s ⍴ values are low 
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when Pfam domain models were applied to eukaryotic Pfam domains, suggesting that 
Pfam domain models still cannot reliably transfer stability estimates across the 
prokaryote-eukaryote divide (Table 3).  
 
 

 
Figure 3: Pfam domain models perform better than global proteome models when applied to 
eukaryotic species. A) Distribution of model performances across all evaluated Pfam domain 
clusters when Pfam domain amino acid frequencies are used to predict prokaryote optimal 
growth temperatures. B) Performance of models when used to predict eukaryotic protein melting 
temperatures. Colors represent the different model training and test sets: yellow = built with 
Archaea, tested in Bacteria (or eukaryotes); blue = built with Bacteria, tested in Archaea (or 
eukaryotes); green = built with 80% of total data, tested with held-out 20% (or eukaryotes). 
 

 
Table 3: Average Pfam domain model performance across training and test sets 
 

Training Data Testing Data Average r2 Average RMSE Average ⍴ 

Archaea Bacteria 0.02 ± 0.044 22.5 ± 11.2 0.05 ± 0.15 

Bacteria Archaea 0.20 ± 0.19 21.5 ± 8.7 0.22 ± 0.32 

Both (80%) Both (20%) 0.30 ± 0.19 8.18 ± 4.36 0.20 ± 0.20 

Archaea Eukaryote 0.34 ± 0.38 16.0 ± 10.8 0.02 ± 0.41 

Bacteria Eukaryote 0.34 ± 0.38 15.3 ± 6.1 0.04 ± 0.42 

Both (80%) Eukaryote 0.38 ± 0.39 16.1 ± 5.7 0.02 ± 0.42 

 

Pfam domain models range in accuracy, with amino acid composition being 
highly predictive of OGT for some domain models but not for others. Only 450 Pfam 
domains can be associated with Gene Ontology (GO) terms. GO enrichment analysis 
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shows that the most transferable models - models that rank eukaryotic proteins with r2 > 
0.5 - were slightly enriched for GO terms related to metabolism and catalytic activity 
(Supplemental Figures 1-2). 
 
Over one-third of the proteome is associated with species’ optimal temperature  

The large number of prokaryotic sequences available for most Pfam domains 
makes it possible to associate individual sites with prokaryote optimal growth 
temperatures. For each Pfam domain cluster, domain observations were aligned and re-
coded to reflect each of 9 amino acid physicochemical properties (Li et al. 2016). Two 
principal components were added to control for species relatedness; these explain an 
average of 94% of the variance within each domain cluster (Supplemental Figure 3). 
Site-specific associations were run separately in Archaea and Bacteria species, and the 
resulting positions were compared to determine whether sites could be consistently 
associated with OGT across phylogenetic domains. 

323,850 residue positions in 2,088 Pfam domain clusters were tested for 
associations with species’ OGT. Associations were calculated separately in Archaea 
and Bacteria species and OGT-associated sites were compared between the two 
phylogenetic domains to determine whether a consistent subset of residue positions are 
associated with optimal temperature. On average, 59.0% of sites in Archaea Pfam 
domains and 75.2% of sites in Bacteria Pfam domains pass an FDR significance 
threshold of ɑ=0.05. There is a substantial overlap between sites in Archaea and 
Bacteria, with 48.0% of Pfam domain positions associated with temperature in both 
phylogenetic domains (Figure 4A). The lower proportion of significant sites in Archaea 
Pfam domains may be due to reduced power to detect associations in the smaller 
Archaea dataset. There is a positive rank correlation between p-values from sites in the 
Archaea dataset and sites in the Bacteria dataset for most Pfam domains, and the 
correlation is significant in nearly 40% of the tested Pfam domain groups, suggesting 
that similar positions within a protein domain are temperature sensitive in both Archaea 
species and Bacteria species (Figure 4B). For most of the significant sites, 4-7 
physicochemical properties have consistent effect estimates and this distribution differs 
significantly from the expected distribution of effect estimates (ꭓ-square test, p < 2.2e-
16). The set of physicochemical properties that has a consistent effect estimate in both 
Bacteria and Archaea GWAS results varies from site to site, but each property is 
consistent across domains in about 50% of the tested positions (Supplemental Figure 
4). 

To compare the transferability of this site-specific model to eukaryotes, we 
identified 41 single-copy orthogroups present in six eukaryotes. We used the prokaryote 
dataset to identify temperature-associated residues and calculated a value of 
temperature sensitivity for each site based on the mean OGT of prokaryotic species 
with the same amino acid at the same position. Temperature sensitivity values were 
then aggregated across all tested proteins. The correlation between the resulting 
measure of thermal sensitivity and the true OGT for the six eukaryotic species is r2=0.39 
(p=0.18) and the rank correlation is  ⍴= 0.72 (p=0.10). This is suggestive of an 
improvement over both the global proteome and Pfam domain models, although with so 
few eukaryotic species the correlation is not significant (Figure 4C). 
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Figure 4: Individual Pfam domain sites are associated with temperature. A) Proportion of Pfam 
domain sites that pass a 5% FDR significance threshold in either Archaea (yellow), or Bacteria 
(blue), or are shared between both (green). B) Correlation of p-values between Archaea 
associations and Bacteria associations for each Pfam domain cluster. C) Relationship between 
the true optimal growth temperature of six eukaryote species and the predicted thermal stability 
in these species. Thermal stability is predicted using residue-specific associations with optimal 
temperature for single-copy orthologous proteins present in all six species (outlined in Figure 
4.8).   
 

Discussion 
In this study, we evaluated protein sequences from more than 4,800 prokaryotic 

species to investigate whether trends in protein sequence or composition could be 
associated with optimal growth temperature and applied across a wide range of 
species. Our aim was to build transferable models of temperature adaptation for species 
from any phylogenetic domain using primary amino acid sequence. Our analyses show 
that while proteome-wide counts are good predictors of prokaryotic OGT, extension to 
eukaryotic species requires comparisons using smaller sections of the proteome. 
Protein domains, which are highly conserved across the tree of life, are a good 
candidate for building transferable models across large phylogenetic distances to 
understand trends in molecular evolution, and GWAS-like models can identify individual 
residues that are associated with optimal growth temperature. 

While we were able to replicate findings from previous studies correlating amino 
acid frequency in prokaryotes with OGT (Zeldovich et al. 2007; Sauer and Wang 2019), 
these models cannot predict OGT for eukaryotes. We hypothesize that the failure to 
transfer global proteome models to multicellular eukaryotes is due to the additional 
complexity, lower effective population sizes, and longer generation times of the 
eukaryotic species tested here. These forces reduce the efficiency of selection on 
individual amino acid residues within eukaryotes (Huber et al. 2017). As a result, amino 
acid frequencies across the proteome are more influenced by genetic drift and do not 
accurately reflect temperature optima in eukaryotes the way they do in prokaryotes.  

For global models that incorporate information from across the proteome, Pfam 
domain regions of the protein are more predictive than the proteome as a whole. 
Models using Pfam domain amino acid frequencies to predict OGT can also predict 
eukaryote Tm with moderate levels of accuracy. Previous studies have found that 
protein functional requirements constrain evolution and amino acid frequency, which is 
consistent with our findings that functional Pfam domain regions are more predictive of 
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prokaryote OGT than the proteome as a whole (Saelensminde et al. 2007; Zeldovich et 
al. 2007; Arcus et al. 2016). Since Pfam domains often carry out important binding and 
catalytic functions, it seems likely that these sequences are under strong selective 
pressure and that deleterious temperature-sensitive mutations within Pfam domains 
would be purged quickly (El-Gebali et al. 2019). Selection may be weaker in the loop 
and disordered protein regions outside of Pfam domains, increasing noise and reducing 
the signal of temperature sensitivity.  

The site-specific models that associate individual amino acid residues with 
temperature give insight into which positions within a protein are temperature sensitive. 
This model also transfers best across the prokaryote-eukaryote divide, although it can 
only rank species by temperature sensitivity and cannot predict optimal temperature 
directly. These models likely transfer to eukaryotes better than models based on amino 
acid frequencies because they consider each residue separately, and only use residues 
associated with OGT in prokaryotes to make predictions about eukaryotic amino acid 
residues. The results support our hypothesis that a consistent subset of amino acid 
residues is important for protein evolution, and that many small changes in aggregate 
contribute to protein evolution and thermal adaptation (Petrović et al. 2018; Venev and 
Zeldovich 2018).  

This method provides the community with a rich set of predictions about which 
amino acids are temperature sensitive in Pfam domains and establishes methods to 
evaluate amino acid temperature sensitivity in other species. Estimates of temperature 
sensitivity can be used to provide context for amino acid changes across a range of 
species. For example, a single amino acid change in the maize HPC1 gene has been 
related to differences in phospholipid composition in warm- and cold-adapted maize 
varieties. That amino acid change is present in the phospholipase Pfam domain 
(PF01764) and is significantly associated with OGT in prokaryotes, suggesting that this 
residue has a consistent and important effect on protein function at different 
temperatures across both prokaryotes and eukaryotes (Rodríguez-Zapata et al. 2021). 

Further research is still needed to relate protein temperature sensitivity to 
organism fitness and to be able to predict how much a specific amino acid change will 
increase or decrease thermostability in a eukaryotic protein. Future models may also 
incorporate linkage or residue interactions to understand how a protein evolves 
(Petrović et al. 2018; Salinas and Ranganathan 2018). In this study we restricted most 
of our analyses to Pfam domains to make it easier to identify and align sequences 
across large evolutionary distances, but loop and disordered protein regions may play 
an important role in protein temperature sensitivity and warrant further study. 

Despite these limitations, the results presented here demonstrate that some 
biochemical features are transferable across all three domains of life. We show that 
models focused on small regions of the proteome outperform global models based on 
amino acid frequency, and that protein evolution in prokaryotes can be used to gain 
insight into eukaryotic proteome thermal profiles. The methods developed here can be 
applied to newly-sequenced eukaryotic proteomes and will facilitate research into how 
protein temperature sensitivity interacts with organism fitness, allow comparisons of 
molecular temperature sensitivity across species, and help prioritize functional variants 
when determining candidate mutations for genome editing.  
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Materials and Methods:  

 
Figure 5: General steps for each model to evaluate proteome composition as it relates to 
temperature. Briefly, species’ proteomes and genomes are processed to predict OGT and to 
find Pfam domains. This data is used to create models predicting temperature sensitivity using 
global proteome features, Pfam domain features, or site features.  
 

Selecting species and determining OGT 
 All prokaryote species with both genomes and proteomes available on EnsemblBacteria 
were downloaded for evaluation, resulting in a total of 44,048 genomes with some species 
having many duplicate genomes. We used tRNAscanSE to identify tRNAs in each genome. 
When there were multiple genomes available, only the genome with the highest number of 
tRNAs identified was selected. This resulted in a set of 4,827 unique species with both genome 
and proteome data, including 277 Archaea species and 4,550 Bacteria species. Optimal growth 
temperature (OGT) was predicted for each species, using the model outlined in Cimen, Jensen, 
and Buckler (2020). Eukaryotic species with protein melting temperatures were obtained from 
the meltome atlas dataset (Jarzab et al. 2020).  
 
Identifying Pfam domains 

The PfamScan pipeline was used to predict Pfam domains within each species 
proteome, and results were then sorted and separated into distinct files for each Pfam domain in 
the Pfam database (El-Gebali et al. 2019). Pfam domains were aligned using the hmmalign tool 
from HMMER and default parameters (hmmer.org; version 3.3.1), and alignments were re-
coded to reflect amino acid physicochemical properties (Li et al. 2016). A Snakemake pipeline 
facilitated replication and made it easier to scale the pipeline to many proteomes (Köster and 
Rahmann 2012). The number of observations varied by multiple orders of magnitude, with some 
Pfam domains having more than 100,000 observations, and others having no observations at 
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all. To repeat this step, a docker image is available on Dockerhub at lynnjo/protein_temp:0.07 
and scripts are available in a Bitbucket repository at 
https://bitbucket.org/bucklerlab/p_proteintemp/src/master/. 
 
Global proteome models 

 
Figure 6: Logic used to build global proteome models to predict OGT from species’ amino acid 

counts. 

 

The global OGT prediction models require amino acid frequency statistics from 
across each species’ proteome. Sites were grouped by whether or not they fell within 
Pfam domains. Amino acid frequencies were calculated for each proteome. Pfam 
domain amino acid counts were subtracted from the total proteome amino acid counts 
to determine amino acid frequency in non-Pfam domain protein regions. To see if 
previous literature results could be replicated, we used a linear regression to predict 
OGT from amino acid frequency statistics (Figure 1, Table 1). Models were built using 
data from only Bacteria species, only Archaea species, or a randomly-selected 80% of 
the total dataset, including both Archaea and Bacteria. In each case, the model 
transferability was tested by applying the regression model coefficients to the held-out 
portion of the dataset (Archaea, Bacteria, and 20% of total, respectively). Performance 
was evaluated by comparing Spearman rank correlation (⍴) and r2 between models. 
Models with higher average performance on the held-out set were considered more 
transferable. Regression coefficients were then applied to amino acid counts from six 
eukaryotic species to predict eukaryote OGT and evaluate performance across the 
prokaryote-eukaryote divide. 
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Pfam domain models 

 
Figure 7: Logic used to cluster Pfam domains and build domain-specific regression models to 

predict optimal temperature. 

 

Clustering domain observations 
 Pfam domains represent conserved functional segments of proteins, but similar proteins 
with slight functional differences are often grouped within a single Pfam domain (e.g. PF00006 
contains both alpha and beta subunits of ATP synthase). To capture these differences, each re-
coded Pfam domain was clustered using the k-means clustering algorithm so that each Pfam 
domain contained 2 or more clusters. Because kmeans clustering can only be done on 
numerical values, each Pfam domain amino acid sequence was re-coded to reflect chemical 
properties of each amino acid before clustering (Li et al. 2016). Each domain was tested with 2 
< k < 12 clusters. For each value of k, the clustering was repeated 10 times with random starting 
seed values. The Rand Index, which measures similarity between a set of data clusters, was 
used to evaluate clustering consistency at each value of k. The smallest value of k that 
produced reliable data clustering was selected (Rand 1971). Each observation in every Pfam 
domain was assigned a cluster ID that was used for subsequent analyses. 
 
Pfam domain regression analysis 
 Pfam domain clusters with fewer than 20 Archaea and 20 Bacteria observations were 
removed. The remaining domains were used to build ridge regression models for each Pfam 
domain. Models attempted to predict OGT from amino acid composition within the Pfam domain 
and were then applied to a held-out portion of the data to determine how well information could 
be transferred across domains of life. As with the global models, data were either split by 
phylogenetic domain (e.g. trained in Bacteria, applied to Archaea and vice-versa) or by 
randomly selecting 80% of the data to build the model and predicting OGT for the remaining 
20%. Predicted OGT was compared to known OGT to determine model accuracy. Prediction r2 
and root mean square error (RMSE) were used to evaluate performance. 

After building and comparing model performance on prokaryotic Pfam domains, the 
same models were applied to eukaryotic proteins from the meltome atlas dataset (Jarzab et al. 
2020). Pfam domains were predicted for six eukaryotic species from the meltome atlas using 
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the Pfam prediction Snakemake pipeline, and amino acid frequencies were calculated for each 
domain as with prokaryotes. Prokaryotic protein domain model coefficients were used to predict 
Tm for eukaryotic protein domains and compared to the measured Tm values from the meltome 
atlas. 
 
GO analyses: 
 GO terms associated with transferable Pfam domain models were evaluated using the 
topGO program in R (Alexa and Rahnenfuhrer 2020). Models were considered transferable if 
they resulted in an r2 > 0.5 when applied to eukaryotic protein melting temperatures. 
 
Site-specific models 

 
Figure 8: Logic used for site-specific GWAS models on Archaea and Bacteria Pfam domains. 

 

Pfam domain observations were aligned using hmmalign (hmmer.org; version 3.3.1) 

using default parameters. Alignments were clustered using the method described above, and 

re-coded to reflect amino acid physicochemical properties (Li et al. 2016). Each Pfam domain 

was filtered to remove columns in the alignment that contained a gap character at 60% or more 

of the observations. The remaining alignment columns were then filtered to remove rows that 

were missing more than 95% of the total Pfam domain sequence, as these Pfam domain 

fragments are unlikely to be functional domains (Triant and Pearson 2015). 

There were 1,243 Pfam domains with an average of 260.5 observations per domain left 

after filtering, resulting in a total of 323,850 tested residue positions. Pfam domain lengths vary 

from species to species, but the same set of 1,243 Pfam domains contained 801,168 positions 

in the aligned Pfam sequences, meaning that 40% of sites were retained after filtering. For each 

cluster and position in the Pfam domain, a separate linear regression was run to associate the 

residues at that position with species’ OGT. Terms included numerical values representing 

amino acid hydrophobicity, hydrophilicity, hydrogen bond count, side-chain volume, polarity, 

polarizability, solvent-accessible surface area, side chain net charge index, and mass, as well 

as 2 principal components (PCs) to account for phylogenetic relationships between species 

within the cluster. PCs were calculated on the filtered sequence data and used to control for 

shared evolutionary history between species. Initial tests of variance explained by 1-3 principal 
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components showed that most of the variance in amino acids at a particular site could be 

captured by a single principal component, with an average of 92% of the variance within the 

domain sequences explained by one principal component and 94% and 95% explained by 2 

and 3 PCs, respectively (Supplemental Figure S3). 

To determine whether similar residues were responding to temperature in both Archaea 

and Bacteria, site-specific regressions were run in each phylogenetic domain separately. Sites 

that passed a 5% Bonferroni-corrected significance threshold in both Archaea and Bacteria 

were compared. The Spearman rank correlation of p-values in the Archaea and Bacteria 

analyses were used to determine whether OGT associations were similar across the two 

phylogenetic domains. 

Six eukaryotic species were used to determine whether sites associated with 

temperature in prokaryotic species were also predictive of eukaryotic temperature adaptation. 

Single-copy orthogroups were identified with OrthoFinder, resulting in 41 single-copy 

orthogroups shared among all six species (Emms and Kelly 2015). Pfam domains were 

identified in the shared orthogroup proteins and aligned to the existing prokaryote Pfam domain 

sequences using the mafft --add function and default parameters, which ensured that alignment 

coordinates with the added eukaryotic sequences matched coordinates from the original 

prokaryote alignments (Katoh and Frith 2012). At each site, the eukaryotic amino acid residue 

was compared to the average OGT of prokaryote species with the same residue at that position, 

giving a measure of thermal adaptation for each site in every Pfam domain.  

Because the Pfam domains identified in homologous proteins can vary across species, a 

different number of sites was tested for each of the six eukaryotes (Table 4). All sites that were 

significantly associated with OGT in prokaryotes (and passing an FDR significance threshold of 

0.1) were then collected and averaged across all sites to get a statistic representing thermal 

adaptation for each species. Sites were averaged to provide a single number for each genome 

for comparison purposes. The distribution of predicted OGT values was similar in all six species, 

with bimodal normal distributions centered around 30ºC and 50 ºC. Both r2 and ⍴ decrease if 

using mode OGT values instead of averages to account for the bimodality; r2=0.17 and ⍴=0.64. 

This thermal adaptation statistic was compared to the overall OGT of the species to evaluate 

transferability. 

  

Table 4: Testable amino acid residues and Pfam domain count for six eukaryote species. 

Species Pfam domain count Residue count Average sites/domain 

Arabidopsis thaliana 34 5912 173.9 

Caenorhabditis elegans 62 9000 145.2 

Danio rerio 31 4836 156.0 

Drosophila melanogaster 37 5745 155.3 

Mus musculus 30 5084 169.5 

Saccharomyces cerevisiae 28 5000 178.6 
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Data availability: 
The results presented in this paper can be found on the CyVerse Data Commons at 
/iplant/home/shared/commons_repo/curated/Jensen_proteinTemp_Jun2021. Scripts and the 
snakemake pipeline developed to facilitate the analyses can be found on bitbucket at 
https://bitbucket.org/bucklerlab/p_proteintemp/src/master/. 
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