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Abstract 

Crop improvement through cross-population genomic prediction and genome editing requires 

identification of causal variants at single-site resolution. Most genetic mapping studies have 

generally lacked such resolution. In contrast, evolutionary approaches can detect genetic effects 

at high resolution, but they are limited by shifting selection, missing data, and low depth of 

multiple-sequence alignments. Here we used genomic annotations to accurately predict 

nucleotide conservation across Angiosperms, as a proxy for fitness effect of mutations. Using 

only sequence analysis, we annotated non-synonymous mutations in 25,824 maize gene models, 

with information from bioinformatics (SIFT scores, GC content, transposon insertion, k-mer 

frequency) and deep learning (predicted effects of polymorphisms on protein representations by 

UniRep). Our predictions were validated by experimental information: within-species 

conservation, chromatin accessibility, gene expression and gene ontology enrichment. 

Importantly, they also improved genomic prediction for fitness-related traits (grain yield) in elite 

maize panels (+5% and +38% prediction accuracy within and across panels, respectively), by 

stringent prioritization of ≤ 1% of single-site variants (e.g., 104 sites and approximately 15 

deleterious alleles per haploid genome). Together, our results suggest that our proposed approach 

may effectively prioritize sites most likely to impact fitness-related traits in crops. Such 

prioritizations could be useful to select polymorphisms for accurate genomic prediction, and 

candidate mutations for efficient base editing.  
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Main 

In quantitative genetics, causal mutations are generally detected by statistical associations 

between genetic polymorphisms and phenotypic differences within species (QTL effects). QTL 

effects are useful in plant breeding (e.g., in genomic prediction), but they may be confounded by 

the co-segregation of neutral polymorphisms with causal mutations (linkage disequilibrium; LD) 
1. In contrast, phylogenetic nucleotide conservation (PNC) detects causal mutations by 

conservation of DNA bases across species. This statistic is an indirect indicator of fitness effect 
2, but it is less confounded by LD, due to the uncoupling of causal mutations and nearby 

polymorphisms at large evolutionary timescales. PNC, as quantified by methods like SIFT 3 or 

gerp++ 4, may support plant breeding techniques which require identification of causal mutations 

at single-site resolution (e.g., cross-population genomic prediction, CRISPR-based editing). 

 

Despite key advantages, PNC has practical disadvantages which limit its usefulness in 

quantitative genetics 5,6: (i) it is calculated from a multiple-sequence alignment (MSA), which 

requires cross-species conservation of alignable genomic regions; (ii) it can be so sensitive that 

maximum constraint can be reached even at moderate fitness effects, due to the exponential 

relationship between fitness effects and fixation probability of mutations 2,7; and (iii) it may be 

biased by functional turnover (shifting selection) and clade-specific conservation. To overcome 

these limitations, PNC may be predicted throughout the genome, based on annotations which 

capture the genomic characteristics of fitness effects (genomic annotations). Previous methods 

like CADD 8,9 and LINSIGHT 10,11 have been introduced to predict PNC. However, they have 

relied on genomic annotations from large-scale experiments in human, which may not be 

available in plants. Moreover, the spatial resolution of their inference has been limited by small 

evolutionary timescales, within human and across related species. 

 

In this study, we introduce a machine learning method to predict PNC across Angiosperms in 

coding regions in maize (Zea mays L.), using genomic annotations that are readily available from 

DNA and protein sequence data. Computational annotations have several advantages: low cost, 

absence of missing values, and ease of portability from one genome to another. They may also 

provide latent (non-observed) representations of genes, and can be used to perform in silico 

mutagenesis to predict the impact of point mutations on these representations. To achieve high 
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resolution and high accuracy, we predict PNC at large evolutionary timescales by high-resolution 

genomic annotations. We use in silico mutagenesis to estimate the effect of mutations on protein 

structure, based on UniRep, a sequence-based deep learning technique which characterizes 

protein structure by latent representations of protein sequences 12. 

 

Our approach did not rely on within-species variability, so we could include nonsynonymous 

mutations at monomorphic sites in maize for model training. This helped us avoid survivorship 

bias at SNP sites and provide many more instances of PNC to learn about the genomic 

characteristics of fitness effects: 20,136,310 monomorphic sites instead of 483,448 SNPs in 

Hapmap 3.2.1 (the reference panel in maize) 13 or 103,905 SNPs in elite maize panels (hybrid 

panels) 14 (Fig. 1, Supplementary Fig. S1).  

 

At each nonsynonymous mutation, PNC was characterized by: deep MSA (tree size > 5) and 

high conservation (substitution rate < 0.05 over the MSA). Observed PNC was used to train a 

probability random forest with genomic annotations about genomic structure (transposon 

insertion, GC content, average k-mer frequency) and protein structure (SIFT score, mutation 

type, protein features and in silico mutagenesis scores). Our prediction approach benefited from 

three key advantages (Fig. 2): (i) monomorphic sites provided more information about PNC; (ii) 

annotations like SIFT scores and in silico mutagenesis scores enabled predictions at single-site 

resolution; and (iii) leave-one-chromosome-out prediction avoided overfitting to observed PNC. 

 

Compared to a baseline model including SIFT score and mutation type (missense, stop gain, stop 

loss), annotations about genomic structure (especially GC content) contributed to an improved 

prediction accuracy for PNC, from 72% to 76% (Fig. 3a,b). Protein features (UniRep variables) 

and their in silico mutagenesis scores resulted in a further increase to > 80% (Fig. 3a). This 

additional gain in accuracy suggests that novel annotations about protein structure and the impact 

of nonsynonymous mutations may improve our ability to detect deleterious mutations. As 

expected, SIFT score was the most useful genomic annotation for predicting PNC, but its 

importance was on par with those of UniRep variables and in silico mutagenesis scores (Fig. 3b). 

UniRep variables also captured gene variability within maize, for gene expression (RNA and 

protein abundance) and selective constraint (negatively associated with the nonsynonymous-to-
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synonymous SNP ratio, Pn/Ps) (Pearson correlation > 0.35; Supplementary Fig. S2). Therefore, 

the UniRep variables, which were designed to capture protein structural variability across 

viruses, prokaryotes and eukaryotes, were useful across Angiosperms and within maize. 

Nonetheless, a subset of 10 variables stood out as capturing more information about PNC (Fig 

3c) and Pn/Ps (Supplementary Fig. S3) 15. Therefore, few UniRep variables may capture the 

fitness effects of maize genes, and could serve as succinct functional representations of genes for 

effects on fitness-related traits.  

 

Observed PNC is prone to errors and lacks power to discriminate among different sizes of fitness 

effects 6. Therefore, we tested the hypothesis that predicted PNC could estimate fitness effects 

more accurately than observed PNC. Variability at SNPs, as reflected by minor allele frequency 

in Hapmap 3.2.1 (MAF), provided information about selective constraint within species. The 

relationship between PNC and fitness effects was corroborated by its negative association with 

MAF, as was previously reported 16. Notably, SNPs prioritized by predicted PNC tended to have 

lower MAF as prioritizations grew more stringent, and these SNPs were eventually much rarer 

than those prioritized by observed PNC (Fig. 4a, Supplementary Fig. S4). The functional 

relevance of predicted PNC was also supported by its positive association with chromatin 

accessibility (Fig. 4b), which is correlated with phenotypic effects in maize 14,17. However, there 

was a significant increase in expression QTL (eQTL) effect only for observed PNC (P = 0.003 

and P = 0.034 in shoot and root tissues respectively, compared to P = 0.120 and P = 0.485 for 

predicted PNC; Fig. 4c), possibly because of a lack of relevant information in the genomic 

annotations used to predict PNC. 

 
Under the hypothesis that predicted PNC identifies impactful genes, the set of genes prioritized 

by predicted PNC should be enriched for important functional attributes like high gene 

expression. Observed PNC resulted in significant enrichment for highly-expressed genes (higher 

RNA and protein abundance, in more tissues), among 14,646 prioritized genes out of the 24,549 

genes containing nonsynonymous SNPs. However, such enrichment was more evident with 

predicted PNC, and increased consistently as fewer genes were selected (Fig. 5a). As expected, 

Pn/Ps also decreased consistently (Supplementary Fig. S5). These results suggest that predicted 

PNC pointed to impactful genes. Alternatively, PNC at these prioritized genes may be a direct 
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consequence of “expression-rate anticorrelation”, i.e., selection against cytotoxic byproducts of 

highly expressed genes (e.g., due to mRNA misfolding or protein misinteraction), rather than 

selection for functional importance 18–22. 

 

To analyze the function of genes prioritized by predicted PNC, we estimated their enrichment for 

GO classes. Significant enrichment was detected for genes involved in catalytic activity and 

nucleotide binding (e.g., ATP binding for energy transfer). Based on these functional 

enrichments, predicted PNC prioritized genes involved in primary metabolism (Fig. 5b, 

Supplementary Fig. S6). In contrast, genes involved in gene regulation and plant development 

were depleted by these prioritizations. Prioritization by observed PNC also resulted in significant 

depletion for these GO classes, so PNC across Angiosperms may have de-emphasized 

developmental genes, possibly because of functional turnover over large evolutionary timescales 
5,6. Even though we included PNC over moderate evolutionary timescales (tree size between 5 

and its maximum, 16.2), clade-specific constraint (e.g., at the genus level) could not be detected 

in the sample of genomes used in this study 23. In addition, the depletion by predicted PNC may 

have been exacerbated by the prediction model itself (Supplementary Fig. S6); the absence of 

genomic annotations about gene regulation (e.g., RNA-protein binding) may have downplayed 

the importance of developmental genes for fitness. Finally, these depletions might actually 

reflect relaxed selection on low gene expression (expression-rate anticorrelation) 22. However, 

even after accounting for RNA and protein expression, we still observed significant depletions 

for these GO classes (Supplementary Fig. S6), so we could not rule out functional importance as 

a direct determinant of PNC. 
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To assess the functional relevance and practical utility of predicted PNC, we used predicted PNC 

to weight nonsynonymous SNPs in genomic prediction for agronomic traits: days to silking 

(DTS), plant height (PH) or grain yield (GY). We tested the hypothesis that predicted PNC was 

larger at causal variants for fitness-related traits in hybrid panels. Under this hypothesis, we 

expected that (i) weighting SNPs with predicted PNC increased the accuracy of genomic 

prediction; and (ii) prioritizing SNPs with larger predicted PNC resulted in further gain in 

accuracy. Expectation (i) was not met for any of the agronomic traits (Supplementary Fig. S7), 

probably because of the large LD extent in the hybrid panels (average squared correlation above 

0.1 within 100-kb distance), such that causal variants were adequately tagged even by randomly 

weighted SNPs 14. Expectation (ii) was met for GY, our trait most related to fitness; a gradual 

increase in prediction accuracy was observed as prioritization of SNPs was more stringent, with 

a trend similar to that for lower MAF (Supplementary Fig. S4). Moreover, a significant increase 

was obtained by prioritizing the top 1040 (1%) and 104 (0.1%) SNPs (P < 0.05 based on random 

permutations of SNP weights). These gains in prediction accuracy were greater than those 

achieved by observed PNC, despite ~80 times fewer prioritized SNPs (Fig. 6a). Assuming the 

minor allele to be deleterious, these prioritizations would select 15 mutations per inbred line, for 

subsequent purging by breeding or CRISPR-based editing (Table S1). 

 

Significant increase in prediction accuracy for GY was observed in a large panel of half-sibs 

(NAM-H), likely because the effects of deleterious mutations from the recurrent parent were 

estimated accurately. This gain was significant but modest (0.25 by prioritizing the top 0.1% vs. 

0.24 by weighting all nonsynonymous SNPs equally), probably because the donor parents were 

unrelated and shared few deleterious mutations with one another (Fig. 6b). However, when we 

used NAM-H to predict GY in a different panel (Ames-H), we achieved a large and significant 

increase in prediction accuracy (0.33 by prioritizing the top 0.1% vs. 0.24 with equal weights; 

Fig. 6b). The positive result for GY was not observed when training a genomic prediction model 

in Ames-H. In this panel representative of maize diversity, variation at SNPs – and the 

information available to learn their effect – was negatively correlated with species-wide MAF 14. 

Therefore, prioritization by PNC of variants with lower MAF (Fig. 4a) resulted in larger 

estimation errors in this panel, and may explain why genomic prediction models trained in 
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Ames-H benefited less from prioritizations by predicted PNC (Supplementary Fig. S7). 

 

Genomic prediction was not improved by PNC for other agronomic traits: PH and DTS. This 

lack of improvement may be due to a weak relationship between these traits and evolutionary 

constraint, as proxied by PNC across Angiosperms. Interestingly, prioritizations by predicted 

PNC resulted in a gradual decrease and a significant loss of accuracy for DTS, in a genomic 

prediction model trained in Ames-H, which suggests that predicted PNC may actually fail to 

detect variants that are causal for adaptive traits like flowering time (Supplementary Fig. S7).  

 

Our results about the characteristics of prioritized SNPs and genes suggest that predicted PNC is 

more useful than observed PNC to identify causal variants for fitness-related traits, since it can 

select fewer variants and produce stronger functional enrichments. Our approach was validated 

in elite maize populations, in which deleterious mutations have been purged through sustained 

crop improvement 24. It could be even more useful in other maize populations 25 or other crop 

species, in which deleterious mutations are widespread, like sorghum 26,27 or cassava 28.  

 

Our approach exemplifies important benefits of this coming generation of protein structural 

machine learning annotations for predicting PNC without resorting to experimental data. 

Different approaches, based on summary statistics from genome-wide association studies, are 

subject to biases from SNP survivorship and LD, but they describe the effect of mutations on 

explicitly-defined traits 29,30. Therefore, they could be useful in combination with our approach, 

which does not suffer from the same caveats. Our results demonstrate the usefulness of our 

methodology. They also open possibilities for improved detection of fitness effects, by including 

different evolutionary timescales (e.g., clade-specific fitness effects), broader sets of variants 

(e.g., noncoding variants), and novel genomic annotations (e.g., regulatory effects of genes and 

mutations) 31–33. 
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Methods 

Training data 

Genomic data 

The B73 maize reference genome and its gene model annotations were downloaded from 

Ensembl Plants under version 3, release 31 (ftp://ftp.ensemblgenomes.org/pub/plants/release-

31/fasta/zea_mays/). Nuclear gene models with 3’UTR and 5’UTR annotations (hereafter, genes) 

were retained for further analyses (25,824 genes). The representative transcript for each gene 

model was the transcript with the most matches (bit-score > 50 in global alignment) with any 

other transcripts in the genomes of B73, Mo17, BTx623 (Sorghum bicolor) and Yugu1 (Setaria 

italica), or, by default, the longest transcript. Mutations in the coding region of representative 

transcripts were characterized at two types of DNA bases: monomorphic sites and SNP sites. 

Mutations at monomorphic sites were 20,136,310 random nonsynonymous substitutions in the 

maize genome at the selected genes, while those at SNP sites were the 483,448 observed 

nonsynonymous substitutions in Hapmap 3.2.1, a representative panel of inbred lines in maize 13. 

Evolutionary constraint 

Publicly available data from a multiple-sequence alignment (MSA) across Angiosperms was 

previously published in maize 23: neutral score (depth of MSA at each site) and conservation 

scores (rejected substitutions) from gerp++ 4. For each site j, phylogenetic nucleotide 

conservation (PNC) �� was binary: �� � 1 if the neutral score (tree size) was > 5 and the ratio of 

conservation score to neutral score was > 0.95 (i.e., substitution rate < 0.05), �� � 0 otherwise. 

Genomic annotations 

Each mutation in coding regions was characterized by genomic structure (GC content, k-mer 

frequency and transposon insertion) and protein function (mutation type, SIFT score, UniRep 

variables and in silico mutagenesis scores). 

GC content was the number of G or C bases from -49 to +50 bases from the site of the mutation. 

k-mer frequency was the average frequency of all 13-mers comprising the mutation’s site, 

calculated by jellyfish 34. Predictions of transposon insertion at the mutation’s site (helitron, TIR, 

LINE or LTR) were downloaded from 
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https://github.com/mcstitzer/maize_TEs/blob/master/B73.structuralTEv2.disjoined.2018-09-

19.gff3.gz 35. 

Mutation type (missense, stop gain or stop loss), SIFT score and SIFT class (“constrained” if 

SIFT score ≤ 0.05, “tolerated” otherwise) were predicted using SIFT 4G 3. UniRep variables 

were the 256 values generated for each protein sequence by the “256-unit UniRep model” 

available from https://github.com/churchlab/UniRep 12. In silico mutagenesis scores measured 

the impact of each mutation on proteins, as quantified by the UniRep variables: 256 deviations + 

1 Euclidean distance between the reference representation and the mutated representation.  

Prediction of evolutionary constraint by genomic annotations 

Model fitting 

The relationship between genomic annotations and observed PNC (�� � 0 or 1) was estimated 

by probability random forests 36,37 implemented in the R package ranger 38. To maximize power 

to differentiate negative (�� � 0) and positive examples (�� � 1) of evolutionary constraint, �� 

was set to missing in intermediate cases where substitution rate > 0.05 or tree size < 5 (�� � 0 

only in least conserved regions where the MSA is missing). The probability ���� � 1� was 

estimated by 1000 trees per forest, 50,000 sites per tree (sampled with replacement), and at least 

100 sites at each terminal node. Mutation effect, SIFT score and SIFT class were always 

included as baseline predictors, while a third of remaining genomic annotations (GC content, k-

mer frequency, transposon insertion, UniRep variables and in silico mutagenesis scores) were 

randomly sampled as predictors for each tree. To account for imbalance with respect to PNC and 

chromosome, each observation (site) was weighted by the inverse of the count of its respective 

class, as determined by its observed PNC and its chromosome. 

Leave-one-chromosome-out prediction 

For each chromosome � � 1, . . . ,10, PNC at each SNP site in chromosome k was predicted by a 

probability random forest (��� �  ���� � 1�), trained on monomorphic sites in all chromosomes 

except k (Fig. 2). Importance of genomic annotations in random forests was estimated by the 

corrected impurity measure 39. Classification accuracy was estimated by the percentage of sites 

for which ���(rounded) equaled ��, weighted by the sample weights (as described above). When 
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estimating the importance of genomic annotations and assessing the effect of random forest 

parameters on classification accuracy (number of samples per tree, sets of genomic annotations 

used in prediction), random forests were validated at monomorphic sites in chromosome 8 and 

trained (at monomorphic sites) in remaining chromosomes (Fig. 2). 

Validation of predicted evolutionary constraint 

Experimental SNP annotations 

Predicted PNC was validated by measures of functional importance of SNPs: within-species 

conservation, cis eQTL effect, and chromatin accessibility. Within-species conservation was 

quantified by minor allele frequency (MAF), estimated in a filtered set of SNPs (bi-allelic, minor 

allele count ≥ 3, missingness ≤ 50%) in the Hapmap 3.2.1 panel 13, imputed by BEAGLE 5.0 40. 

Cis eQTL effects were the statistical associations (in absolute value) between SNPs and 3’ RNA-

seq expression of genes, in the diverse panel of 299 lines analyzed by 41. Cis eQTL effects in 

germinating shoot or germinating root were estimated for the SNPs with MAF ≥ 0.05 in this 

panel, in a linear regression model including the PEER factors from 41 as covariates, using 

GEMMA 0.98.1 42. Chromatin accessibility was characterized by hotspots of MNase 

hypersensitivity in germinating shoot or germinating root, as defined by 17. 

PNC was validated by experimental SNP annotations in a generalized additive model fitted in the 

R package mgcv 43. PNC was regressed on MAF and cis eQTL effects (by cubic regression 

splines), and chromatin accessibility (as factors), while accounting for chromosome (as factor) 

and whether the site was included in the MSA (as factor, to control for bias of the MSA towards 

gene-dense regions). 

Experimental gene annotations 

Predicted PNC was validated by measures of genes’ functional importance: gene expression, 

gene ontology, and ratio of nonsynonymous-to-synonymous SNPs (Pn/Ps). Gene expression was 

quantified by RNA abundance across 23 tissues, and protein abundance across 32 tissues 44. In 

all analyses, gene expression was log-transformed: ����� � 1� where x is RNA abundance in 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM) or protein abundance in 

distributed normalized spectral abundance factor (dNSAF). Experimentally-validated gene 

ontology (GO) annotations 45 were retrieved by mapping protein sequences to the eggNOG 
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database, using DIAMOND 46. In enrichment analyses, GO annotations were trimmed to the 

broader (and less redundant) GO slim terms in the  “plant GO slim” subset 

(http://current.geneontology.org/ontology/subsets/goslim_plant.obo), and GO annotations with 

fewer than 20 positives were discarded (87 selected GO terms). Pn/Ps was the ratio of segregating 

nonsynonymous SNPs (Pn) over segregating synonymous SNPs (Pn) (MAF ≥ 0.01 in Hapmap 

3.2.1) within each gene with enough observed segregating synonymous SNPs (Ps ≥ 5). 

In validations by experimental gene annotations, genes containing sites with ���above a threshold 

value were selected. Threshold values were the 50%, 90%, 99% and 99.9% percentiles of ���’s. 

Using these successive selections, we assessed the functional enrichment of prioritized genes as 

fewer sites were included due to more stringent thresholds. The significance of the enrichment 

for gene expression (difference in mean expression between selected genes and all genes) and 

GO slim terms (overrepresentation of term among selected genes) were tested by two-sample t-

test and Fisher’s exact test, respectively. 

Field traits in hybrid maize 

Two panels of hybrid maize lines were analyzed to assess the usefulness of predicted PNC for 

genomic prediction: a diversity panel (Ames-H; n=1106) and a collection of bi-parental crosses 

having B73 as their common parent (NAM-H; n=1640) 14. These panels were phenotyped for 

three agronomic traits: days to silking (DTS), plant height (PH) and grain yield adjusted for DTS 

(GY). They were genotyped for 12,659,487 genomewide SNPs, including m=103,905 

nonsynonymous SNPs in the coding regions of the 25,824 genes selected in this study. 

Predicted PNC (���) was used to weigh each SNP j in genomic prediction models applied to 

hybrid maize panels: 

� � �� � � � ���� � � 

� ~ ���, ���
�� 

���	~���, ���	���	
2 � 

� ~ ���, ���
�� 

where y is the n-vector of mean phenotypic values; Q is a n × 4 matrix depicting population 

structure by a column of ones (for the intercept) and the three principal components from the 

Hapmap 3.2.1 panel, with respective effects α; e is the vector of errors; G is the n × n 
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genomewide relationship matrix such that the n-vector u consists of genomewide breeding 

values: 

���� �
∑ ��������������������

∑ ����������
, 

where xil is the genotype of hybrid i at SNP l, pl is the estimated frequency of SNP l in hybrid 

panels. 

GCDS is the n × n relationship matrix from nonsynonymous SNPs weighted by predicted PNC, 

such that the n-vector uCDS consists of breeding values due to weighted nonsynonymous SNPs:  

���� �
���������

�

∑ ���
	
�
�

 

� � � !�"���#���,…,�, 

where XCDS is the n × m matrix of genotypes at nonsynonymous SNPs. 

Genomic prediction models were fitted by REML, using the R package regress 47. Genomic 

prediction accuracy was estimated by the Pearson correlation between predicted and observed 

phenotypic values: 

$�%��&, ��; �& � ��� � �� � �����. 

In validations of predicted PNC by genomic prediction, ���’s below a threshold value were set to 

zero. Threshold values were the 0%, 50%, 90%, 99% and 99.9% percentiles of ���’s, among the 

m SNPs observed in hybrid panels. Using these successive truncations, we assessed the 

enrichment of prioritized SNPs for genomic prediction accuracy, as fewer of them were included 

due to more stringent thresholding on their weights. The significance of ���’s as useful weights in 

genomic prediction was tested by comparing genomic prediction accuracy with the accuracies 

achieved by 20 random permutations of ���’s, hence testing the null hypothesis that ���’s are as 

useful as expected by chance.  
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Figures 

Fig. 1 Distribution of rejected substitution (RS) scores by category of DNA bases. RS scores, 

which integrate information about conservation (1-Substitution rate) and MSA depth (Tree size), 

were calculated by gerp++ 4 as previously described 23. Monomorphic sites: sites with no 

observed polymorphism within maize. SNPs: observed polymorphisms in Hapmap 3.2.1, a 

representative panel of inbred lines in maize 13. SNPs in hybrid panels: subset of SNPs which are 

also observed in two panels of hybrid crosses between inbred lines and testers 14. 

 

Fig. 2 Methodology for prediction of phylogenetic nucleotide conservation (PNC) by probability 

random forests. PNC was defined by high conservation (substitution rate < 0.05) over deep MSA 

 

), 
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(tree size > 5 expected neutral substitutions). Genomic annotations were produced only by 

sequence analysis. They described genomic structure and protein function at nonsynonymous 

point mutations in maize coding regions. Monomorphic sites (no observed polymorphism within 

maize) were used for training, and observed SNPs were used for prediction. In leave-one-

chromosome-out prediction, a probability random forest is trained ten times, once for each left-

out chromosome. 

 

 

Fig. 3 Contribution of genomic annotations to prediction accuracy in probability random forests. 

(a) Classification accuracy of probability random forests for predicted phylogenetic nucleotide 

conservation (PNC). Accuracy: percentage of correct calls by the percentage of sites for which 

predicted PNC (rounded) equaled observed PNC, over three replicates. Accuracy was weighted 

to account for imbalance with respect to PNC and chromosome (see Methods). Sets of genomic 

annotations were sequentially added to the set of predictors in probability random forests. 

Mutation type & SIFT score: Mutation type (missense, stop gain or stop loss), SIFT score (with 

missing values set to 1) and SIFT class (“constrained” if SIFT score ≤ 0.05, “tolerated” 

otherwise). Genomic structure: GC content, k-mer frequency and transposon insertion. 

Mutagenesis scores: in silico mutagenesis scores for UniRep variables. Protein features: UniRep 

variables, generated by the 256-unit UniRep model. (b) Variable importance of genomic 

annotations. Variable importance: corrected impurity measure in probability random forests 39. 

(c) A subset of 10 UniRep variables stood out as contributing most to the prediction accuracy for 

PNC. 
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Fig. 4 Relationship between phylogenetic nucleotide conservation (PNC) and experimental 

annotations at SNPs. (a) Decrease in observed and predicted PNC over within-species variability, 

quantified by MAF in Hapmap 3.2.1 13. (b) Increase in predicted PNC in accessible chromatin 

regions, defined by MNase hypersensitivity in shoot or root tissues 17. (c) Positive association 

between observed PNC and expression QTL effect (in absolute values) in shoot or root tissues, 

estimated in a diverse maize panel 41. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.03.458856doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 5 Functional enrichment of genes prioritized by phylogenetic nucleotide conservation 

(PNC). Genes were prioritized by selecting SNPs with a predicted PNC above the 50%, 90%, 

99%, or 99.9% quantile, or observed PNC equal to 1 (tree size > 5, substitution rate < 0.05). (a) 

Difference in average expression between prioritized genes and all genes. Gene expression is 

quantified by RNA abundance (FPKM over 23 tissues) and protein abundance (dNSAF over 32 

tissues) based on the gene expression atlas of 44: median expression, and number of tissues with 

non-zero expression level. Error bars and dotted lines represent 95% confidence intervals in two-

sample t-tests, for predicted and observed PNC respectively. (b) Enrichment of prioritized genes 

for gene ontology (GO) classes. Ratio of number of prioritized genes over expected number 

under the null hypothesis (random gene prioritization). GO classes belong to the plant GO slim 

subset. Ontology: BP, biological process; MF: molecular function. For each threshold and 

ontology, false discovery rates (FDR) were calculated over GO classes, based on P-values from 

Fisher’s exact tests. Full circles and full lines indicate FDR < 0.05, for predicted and observed 

PNC respectively. 
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Fig. 6 Prioritization of nonsynonymous SNPs in genomic prediction for grain yield, in the 

Nested Association Mapping hybrid panel (NAM-H). (a) Number of SNPs prioritized by 

phylogenetic nucleotide conservation (PNC). (b) Genomic prediction accuracy within panel (in 

leave-one-family-out prediction in NAM-H) or across panels, from NAM-H to a diverse hybrid 

panel (Ames-H) 14. Black dashed line: nonsynonymous SNPs were weighted equally (“Equal 

weights”). Red line: nonsynonymous SNPs were weighted by observed PNC. Blue curve: 

Nonsynonymous SNPs were weighted by predicted PNC, and prioritized by truncating weights 

to zero if they were under the 0%, 50%, 90%, 99%, or 99.9% quantile. Open circles: 

nonsynonymous SNPs were weighted and prioritized by random permutations of predicted (blue) 

or observed (red) PNC. Full circles and full lines indicate P < 0.05 based on random 

permutations of SNP weights, for predicted and observed PNC respectively. All genomic 

prediction models accounted for genome-wide effects by principal components and a genomic 

relationship matrix. 
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Supplementary material 

 

Fig. S1 Distribution of neutral tree size (neutral scores) by category of DNA bases. Neutral tree 

size was calculated as previously described 23. Monomorphic sites: sites with no observed 

polymorphism within maize. SNPs: observed polymorphisms in Hapmap 3.2.1, a representative 

panel of inbred lines in maize 13. SNPs in hybrid panels: subset of SNPs observed in Hapmap 

3.2.1, which are also observed in two panels of hybrid crosses between inbred lines and testers 14. 
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Fig. S2 Prediction accuracy of probability random forests for experimental gene annotations, by 

UniRep variables. UniRep variables are generated by the 256-unit UniRep model. Prediction 

accuracy is the Pearson correlation coefficient between predicted values and observed values. 

Expression is quantified by RNA abundance (over 23 tissues) and protein abundance (over 32 

tissues) based on the gene expression atlas of 44: median expression, and number of tissues with 

non-zero expression level. SNP density: percentage of segregating SNP sites in genes (MAF ≥ 

0.01 in Hapmap 3.2.1). SNP ratio: ratio of nonsynonymous-to-synonymous SNPs (Pn/Ps) within 

each gene. 
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Fig. S3 Concordance between importance of UniRep variables for phylogenetic nucleotide 

conservation (PNC) across species and the ratio of nonsynonymous-to-synonymous SNPs (Pn/Ps) 

within species. The importance of UniRep variables for PNC is correlated with their importance 

for Pn/Ps at maize genes; ρ: Spearman correlation coefficient. 
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Fig. S4 Decrease in minor allele frequency of SNPs prioritized by phylogenetic nucleotide 

conservation (PNC). Difference in minor allele frequency between prioritized SNPs and all 

SNPs. SNPs: observed polymorphisms in Hapmap 3.2.1, a representative panel of inbred lines in 

maize 13. SNPs in hybrid panels: subset of SNPs observed in Hapmap 3.2.1, which are also 

observed in two panels of hybrid crosses between inbred lines and testers 14. SNPs were 

prioritized if their predicted PNC was above the 50%, 90%, 99%, or 99.9% quantile, or their 

observed PNC was equal to 1 (tree size > 5, substitution rate < 0.05). Error bars and dotted lines 

represent 95% confidence intervals in two-sample t-tests, for predicted and observed PNC 

respectively. 
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Fig. S5 Difference in experimental annotations of genes prioritized by phylogenetic nucleotide 

conservation (PNC). Difference in experimental annotations between prioritized genes and all 

genes. SNP density: percentage of sites for which a SNP is observed (MAF ≥ 0.01 in Hapmap 

3.2.1) within each gene. SNP ratio: ratio of nonsynonymous-to-synonymous SNPs (Pn/Ps) within 

each gene. Genes were prioritized by selecting SNPs with a predicted PNC above the 50%, 90%, 

99%, or 99.9% quantile, or observed PNC equal to 1 (tree size > 5, substitution rate < 0.05). 

Error bars and dotted lines represent 95% confidence intervals in two-sample t-tests, for 

predicted and observed PNC respectively. 
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Fig. S6 Enrichment of genes prioritized by phylogenetic nucleotide conservation (PNC), for gene 

ontology (GO) classes. Effect of maximum PNC (in each gene coding sequence) on the odds 

ratio for GO annotations [Pr(GO annotation)/(1 - Pr(GO annotation)], based on logistic 

regression. Estimated effects of gene prioritizations are shown on a log scale: point estimates 

(dot) and 95%-confidence intervals (segment). Gray symbols: effects of gene prioritizations are 

not adjusted (simple logistic regression of GO annotation on maximum PNC). Black symbols: 

effects of gene prioritizations are adjusted by gene expression (logistic regression including gene 
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expression variables as covariates). Gene expression variables are RNA abundance (FPKM over 

23 tissues) and protein abundance (dNSAF over 32 tissues) based on the gene expression atlas of 
44: median expression [median of log(1+FPKM) or log(1+dNSAF)], and number of tissues with 

non-zero expression level. GO classes belong to the plant GO slim subset. Ontology: CC, 

cellular component; BP, biological process; MF: molecular function. 

 

 

Fig. S7 Prioritization of nonsynonymous SNPs in genomic prediction for agronomic traits in 

hybrid panels. Agronomic traits: days to silking (DTS), plant height (PH) and grain yield (GY); 

hybrid panels: Nested Association Mapping hybrid panel (NAM-H), diverse hybrid panel 
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(Ames-H) 14. Genomic prediction accuracy was estimated within NAM-H (in leave-one-family-

out prediction), from NAM-H to Ames-H, and from Ames-H to NAM-H. Black dashed line: 

nonsynonymous SNPs were weighted equally (“Equal weights”). Red line: nonsynonymous 

SNPs were weighted by observed phylogenetic nucleotide conservation (PNC). Blue curve: 

Nonsynonymous SNPs were weighted by predicted PNC, and prioritized by truncating weights 

to zero if they were under the 0%, 50%, 90%, 99%, or 99.9% quantile. Open circles: 

nonsynonymous SNPs were weighted and prioritized by random permutations of predicted (blue) 

or observed (red) PNC. Full circles and full lines indicate P < 0.05 based on random 

permutations of SNP weights, for predicted and observed PNC respectively. All genomic 

prediction models accounted for genome-wide effects by principal components and a genomic 

relationship matrix. 

  

Table S1 Prioritization of nonsynonymous SNPs by phylogenetic nucleotide conservation 

(PNC): number of selected SNPs in hybrid panels and expected number of deleterious mutations 

per inbred lines based on minor allele frequency (MAF) in Hapmap 3.2.1 

PNC Minimum PNC 
percentile (%) 

Number of 
prioritized 
SNPs 

Average MAF in 
Hapmap 3.2.1 

Number of minor 
alleles per 
haploid genome 

Observed NA 8311 0.185 1537.2 

Predicted 0 103905 0.206 21394.3 

50 51953 0.191 9933.5 

90 10391 0.166 1721.4 

99 1040 0.159 165.1 

99.9 104 0.144 14.9 
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