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ABSTRACT

Epistatic interactions among quantitative trait loci (QTL) contribute substantially to the variation in
complex traits. The main objectives of this study were to (i) compare three- vs. four-step genome scans to
identify three-way epistatic interactions among QTL belonging to a metabolic pathway, (ii) investigate by
computer simulations the power and proportion of false positives (PFP) for detecting three-way inter-
actions among QTL in recombinant inbred line (RIL) populations derived from a nested mating design,
and (iii) compare these estimates to those obtained for detecting three-way interactions among QTL in
RIL populations derived from diallel and different partial diallel mating designs. The single-nucleotide
polymorphism haplotype data of B73 and 25 diverse maize inbreds were used to simulate the production of
various RIL populations. Compared to the three-step genome scan, the power to detect three-way interac-
tions was higher with the four-step genome scan. Higher power to detect three-way interactions was observed
for RILs derived from optimally allocated distance-based designs than from nested designs or diallel designs.
The power and PFP to detect three-way interactions using a nested design with 5000 RILs were for both the
4-QTL and the 12-QTL scenario of a magnitude that seems promising for their identification.

UNTIL now estimation of the positions of quanti-
tative trait loci (QTL) in plant genetics was ac-

complished by classical linkage mapping (Lander and
Botstein 1989). Recently, the adaption of association
mapping in plant genetics has been proposed by several
authors (e.g., Vuylsteke et al. 2000; Thornsberry et al.
2001). Both linkage and association mapping methods
have merits and limitations for QTL mapping. While
linkage mapping methods offer a high power to detect
QTL in genomewide approaches, association mapping
methods have the merit of a high resolution to detect
QTL (Remington et al. 2001). Wu and Zeng (2001)
studied a joint linkage and linkage disequilibrium (LD)
mapping strategy for natural populations. Using data
from a general complex pedigree of cattle, Blott et al.
(2003) and Meuwissen et al. (2002) identified candidate-
gene polymorphisms at previously mapped QTL by
combining linkage and LD information.

In this study, we examine a genomewide QTL map-
ping strategy using genome sequence information of
recombinant inbred lines (RILs) that were generated

from several crosses of parental inbreds. This QTL
mapping strategy is based on the idea that the genomes
of RILs are mosaics of chromosomal segments of their
parental genome. Consequently, within the chromo-
somal segments the LD information across the parental
inbreds is maintained. Thus, if diverse parental inbreds
are used as in this study, LD decays within the chromo-
somal segments over a short physical distance (Wilson

et al. 2004). Therefore, the new mapping strategy will
show not only a high power to detect QTL in genome-
wide approaches but also a high mapping resolution
when both linkage and LD information are used.

Results from model organisms suggest that epistatic
interactions among loci also contribute substantially to
the variation in complex traits (Carlborg and Haley

2004; Marchini et al. 2005). While Rebai et al. (1997)
applied classical linkage mapping to detect QTL with
additive effects in connected mapping populations of
maize, Blanc et al. (2006) used such populations to
detect two-way epistatic interactions. The power to
detect two-way interactions by using different mating
designs was examined by Verhoeven et al. (2006).
Furthermore, Ritchie et al. (2003) assessed the power
of multifactor dimensionality reduction to detect two-
way interactions. However, several studies described
QTL 3 genetic background interactions (e.g., Doebley
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et al. 1995; Alonso-Blanco et al. 1998), which can be
caused by higher-order epistatic interactions among
QTL (Jannink and Jansen 2001). Furthermore, the
metabolic pathways that presumably underlie quantita-
tive traits involve multiple interacting gene products
and regulatory loci that could generate higher-order
epistatic interactions (McMullen et al. 1998). Informa-
tion about the power for genomewide detection of
epistatic interactions among more than two QTL is still
lacking.

The objectives of our research were to (i) compare
three- vs. four-step genome scans to identify three-way
interactions among QTL involved in a metabolic path-
way, (ii) investigate by computer simulations the power
and proportion of false positives (PFP) for detecting
three-way interactions among QTL in RIL populations
derived from a nested mating design, and (iii) compare
these estimates to those obtained for detecting three-
way interactions among QTL using RIL populations
derived from diallel and different partial diallel mating
designs.

MATERIALS AND METHODS

Simulations: Data underlying the simulations: Our computer
simulations were based on single-nucleotide polymorphism
(SNP) haplotype data, comprising 653 loci of B73 and 25
diverse maize inbreds B97, CML52, CML69, CML103, CML228,
CML247, CML277, CML322, CML333, Hp301, IL14H, Ki3,
Ki11, Ky21, M37W, M162W, Mo18W, MS71, NC350, NC358,
Oh7b, Oh43, P39, Tx303, and Tzi8. The 25 diverse inbreds
were selected on the basis of 100 simple sequence repeat
markers out of a worldwide sample of 260 inbreds to capture
the maximum genetic diversity (Liu et al. 2003). The 26 in-
breds were used to simulate the production of various RIL
populations.

Examined mating designs: The nested association mapping
(NAM) data set was established in accordance with the crossing
scheme applied in the project ‘‘molecular and functional
diversity of the maize genome.’’ From each cross of the 25
diverse inbreds with B73, a segregating population with 200
RILs was developed. The diallel association mapping (DAM)
data set DAM4875 was generated by deriving RIL populations
with 15 RILs from each of the 325 crosses in the diallel
(method 4; Griffing 1956) among all 26 inbreds.

The distance-based (DB) data sets DBc 3 r were created by
selecting from the 325 crosses in a diallel the c combinations of
parental inbreds that show, on the basis of all marker loci, the
maximum genetic dissimilarity calculated according to Nei

and Li (1979). For the c combinations of parental inbreds
r RILs were derived from each combination. In our study the
data sets DB75 3 65, DB125 3 39, and DB195 3 25 were

examined. For single round robin (SRR) (Verhoeven et al.
2006), 188 RILs were derived from each of the 26 chain
crosses, i.e., inbred 1 3 inbred 2, inbred 2 3 inbred 3, . . . ,
inbred 26 3 inbred 1. The data sets DAM900, DB25 3 36,
DB50 3 18, DB100 3 9, and DB150 3 6 were examined only in
combination with the NAM data set and were therefore based
on the 300 crosses in a diallel among the 25 diverse inbreds.

Definition of phenotypic values: For each of the simulated 50
replications, four SNPs were sampled at random from the
linkage map and defined as QTL of a four-locus pathway
(Figure 1). The genotypic values assigned to the inbreds were
based on their allelic states at the four QTL and chosen in such
a way that a combination of complementary and duplicate
molecular interactions existed among the QTL (Table 1)
(Jayaram and Peterson 1990). On the basis of the F‘-metric
model (Yang 2004) the corresponding additive effects of
QTL1, QTL2, QTL3, and QTL4 were 1.375, 0.375, 0.500, and
0.250, respectively. Furthermore, the digenic additive 3
additive effects QTL1 3 QTL2, QTL1 3 QTL3, QTL1 3
QTL4, QTL2 3 QTL3, QTL2 3 QTL4, and QTL3 3 QTL4
were 0.375, 0.500, 0.250, 0.750, 0.250, and 0.125, respectively.
Higher-order epistatic effects involving three and four QTL,
QTL1 3 QTL2 3 QTL3, QTL1 3 QTL2 3 QTL4, QTL1 3
QTL3 3 QTL4, QTL2 3 QTL3 3 QTL4, and QTL1 3 QTL2 3
QTL3 3 QTL4 were 0.750, 0.250, 0.125, 0.625, and 0.625,
respectively. Under the assumption of allele frequencies of
0.5 and linkage equilibrium among the QTL, the assumed
genotypic values correspond to variances s2

A;s
2
AA;s

2
AAA, and

s2
AAAA of 1.172, 0.273, 0.129, and 0.024, respectively (Wricke

and Weber 1986). In the NAM data set, s2
A;s

2
AA;s

2
AAA, and

Figure 1.—Metabolic pathway underlying the
simulations.

TABLE 1

Genotypic values for the four-locus genotypes underlying the
simulations

Genotype

QTL1 QTL2 QTL3 QTL4 Genotypic value

1 1 1 1 4
1 1 1 2 4
1 1 2 1 4
1 1 2 2 4
1 2 1 1 4
1 2 1 2 4
1 2 2 1 4
1 2 2 2 4
2 1 1 1 10
2 1 1 2 6
2 1 2 1 7
2 1 2 2 7
2 2 1 1 2
2 2 1 2 5
2 2 2 1 10
2 2 2 2 7
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s2
AAAA amounted 0.669, 0.087, 0.022, and 0.002, respectively,

due to the deviations of allele frequencies from 0.5.
In a second scenario, 12 QTL, organized in three four-locus

pathways, were assumed. Genotypic values of the inbreds were
determined by summing up the effects caused by the in-
dividual pathways. In this scenario s2

A;s
2
AA;s

2
AAA, and s2

AAAA

were 3.516, 0.820, 0.387, and 0.073, respectively, for a popu-
lation with allele frequencies of 0.5, whereas for the NAM data
set the corresponding variances were 2.034, 0.248, 0.064, and
0.007, respectively.

The phenotypic values of the RILs were generated by adding
a normally distributed variable N(0, s2

E) to the genotypic values.
The error variance was calculated as

s2
E ¼

1� h2

h2

� �
s2

G;

where s2
G denotes the genetic variance and h2 denotes the

heritability on an entry-mean basis. On the basis of previous
empirical studies, we examined h2-values of 0.5 and 0.8 (Flint-
Garcia et al. 2005). All simulations were performed with
software Plabsoft (Maurer et al. 2004), which is implemented
as an extension of the statistical software R (R Development

Core Team 2004).
Statistical analyses: Due to their vast number, it is intractable

to detect three-way interactions using a three-dimensional
genome scan. Therefore, we used two different model selec-
tion approaches for identifying three-way interactions that
considerably reduce the number of models to be evaluated
during the model selection process. For both approaches
PROC GLMSELECT of the statistical software SAS (SAS
Institute 2005) was used.

Several authors suggested the use of information criteria
such as the Akaike information criterion or the Schwarz Bayesian
criterion (Piepho and Gauch 2001) or modifications thereof
(Bogdan et al. 2004; Baierl et al. 2006) to circumvent the
problems connected with multiple likelihood-ratio tests for
model selection. In preliminary simulations, however, we used
the Schwarz Bayesian criterion and observed a high PFP (data
not shown). Therefore, in our study we used the model se-
lection criteria P-to-enter and P-to-stay (Miller 2002), which
allows the use of a more conservative threshold.

All SNPs, and also those treated as QTL, were included in
both approaches. Hence, QTL detection is not based on LD
between QTL and adjacent molecular markers and, thus, the
correlation structure among the RILs can be ignored.

Three-step genome scan: The three-step genome scan applied
in this study to identify three-way interactions was based on the
one-dimensional genome scan described by Jannink and
Jansen (2001). In the first step, stepwise multiple linear re-
gression (Efroymson 1960) was performed on y, the pheno-
typic values of the RILs, as a dependent variable and w1, w2, . . . ,
w653, the SNP loci, and x, the affiliation of each RIL to a cross
of parental inbreds, as independent variables. Independent
variables showing P-to-enter or P-to-stay ,1 3 10�8 were added
or kept in the model.

In addition to the variables identified in the first step, the
variables w1 3 x, w2 3 x, . . . , w653 3 x were used as independent
variables in the stepwise multiple linear regression of the sec-
ond step, where variable selection was performed only on w1 3
x, w2 3 x, . . . , w653 3 x. Variables showing a P-to-enter or P-to-
stay ,1 3 10�5 were added or kept in the model. The i variables
w out of the i w 3 x interactions identified in the second step
were used in the backward elimination procedure of the third
step together with the ð i2Þ and ð i3Þ possible two- and three-locus
interactions among them as independent variables. Variables
showing a P-to-stay ,1 3 10�5 were kept in the model. The
model resulting from the third step was designated as the final
model.

Four-step genome scan: Stepwise multiple linear regression was
also used for the four-step genome scan, where in the first step
y was used as a dependent variable and w1, w2, . . . , w653, the SNP
loci, as independent variables. The j loci identified in the first
step were used together with the two-way interactions, which
were constructed by combining the j loci with all loci, as
independent variables in the stepwise multiple linear regres-
sion of the second step, where variable selection was per-
formed only on the two-way interactions. The single loci and
two-way interactions identified in the first and the second step,
respectively, were used together with the three-way interac-
tions, which were constructed by combining the two-way inter-
actions with all loci, as independent variables in the stepwise
multiple linear regression of the third step. Variable selection
was performed only on the three-way interactions. Three two-
way interactions are subordinated to each three-way interac-
tion, whereas the significance of two of them was examined in
the previous steps. To ensure the detection of three-way epi-
static interactions and not the effect of three-way interactions
confounded with that of the not examined, subordinated two-
way interactions we applied in the fourth step backward
elimination on all variables contained in the model resulting
from the third step and the not examined, subordinated two-
way interactions. In this step, variable selection was performed
only on the three-way interactions and the not examined,
subordinated two-way interactions. The model resulting from
the fourth step was designated as the final model. In each of
the four steps, variables showing a P-to-enter or P-to-stay ,1 3
10�8 were added or kept in the model. This conservative
threshold was chosen to warrant an acceptable PFP. To observe
an acceptable PFP in studies based on empirical data we
suggest using computer simulations to estimate the corre-
sponding P-to-enter and P-to-stay.

The power 1�b* to detect three-way interactions was cal-
culated as the proportion of three-way interactions correctly
identified in the final model out of the total number of three-
way interactions simulated. We estimated the PFP (Fernando

et al. 2004) as the proportion of three-way interactions for
which at least one locus is not a QTL out of the total number
of three-way interactions identified in the final model. Av-
erages were calculated across the simulated 50 replications
to determine 1 � b* and PFP.

RESULTS

The average map distance between the 653 SNP mark-
ers was 2.6 cM. The pairwise genetic dissimilarity among
the 26 inbreds ranged from 0.25 to 0.42 (Figure 2). The
average frequency of the B73 allele was 0.81 in the RILs
of the NAM data set and 0.64 in the RILs of data sets
DAM4875 and SRR.

In the three-step genome scan, the power and PFP to
detect three-way interactions were for the NAM data set
0.05 and 0.35 (4 QTL; h2 ¼ 0.5), respectively (data not
shown). For 12 QTL and h2 ¼ 0.5, the power to detect
three-way interactions using the NAM data set decreased
to 0.00 and PFP increased to 1.00. A power 1�b* of 0.08
(4 QTL; h2 ¼ 0.5) was observed for data sets DAM4875
and DB125 3 39, whereas the PFP was 0.40 and 0.35,
respectively.

Using the four-step genome scan, a power 1�b* to
detect three-way interactions of 0.28 (4 QTL; h2 ¼ 0.5)
was found for the NAM data set (Table 2). In the

Detection of Higher-Order Epistasis in Maize 565



scenario with 12 QTL, the power 1�b* was 0.18. Lower
PFP was detected for the 12-QTL scenario (0.29) than
for the 4-QTL scenario (0.54). Totals of 1.2 and 1.5 times
higher power estimates were observed for the 4- and
12-QTL scenarios of the NAM data set, respectively,
when increasing h2 from 0.5 to 0.8.

The power 1�b* using DAM4875, SRR, or DB data
sets ranged in the four-step genome scan from 0.29 to
0.45 (4 QTL; h2 ¼ 0.5) and from 0.24 to 0.32 (12 QTL;
h2¼ 0.5). PFP varied for these data sets between 0.39 and
0.56 (4 QTL; h2 ¼ 0.5). For the scenario with 12 QTL,
lower PFP values were obtained.

For both levels of h2, �1.5 times higher power esti-
mates were observed for the combined data set of NAM
and DAM900 than for NAM. For the former, PFP was for
both levels of h2 �0.50. The power 1�b* for combined
NAM and DB data sets ranged for 4 QTL and h2 ¼ 0.5
from 0.27 to 0.42 and for h2 ¼ 0.8 from 0.33 to 0.60. For
these data sets PFP varied for 4 QTL and h2¼ 0.5 between
0.46 and 0.52 and for h2 ¼ 0.8 between 0.51 and 0.64.

DISCUSSION

The comparison of power 1�b* of different statisti-
cal analyses requires an equal PFP. However, model
selection procedures such as those applied in our study
do not stringently adhere to a specified PFP (Miller

2002). Nevertheless, in our study similar PFP values were
obtained for all mating designs of each simulation sce-
nario under the four-step genome scan and, thus, power
estimates can be compared.

Owing to technical reasons, we were not able to ascer-
tain similar PFP values for the four-step genome scan as
for the three-step genome scan. However, differences in

Figure 2.—Distribution of pairwise genetic dissimilarities
among the 26 parental inbreds based on 653 single-nucleotide
polymorphism markers.

TABLE 2

Power to detect three-way interactions (1�b*) and proportion of false positives (PFP) using the four-step
genome scan for different mating designs to establish recombinant inbred lines (RIL): nested

(NAM), diallel (DAM), single round robin (SRR), and distance-based (DB) designs

4 QTL 12 QTL

Mating design No. RIL Criterion h2 ¼ 0.5 h2 ¼ 0.8 h2 ¼ 0.5 h2 ¼ 0.8

NAM 5000 1 � b* 0.28 0.33 0.18 0.29
PFP 0.54 0.64 0.29 0.41

DAM4875 4875 1 � b* 0.44 0.54 0.30 0.54
PFP 0.44 0.46 0.16 0.30

SRR 4888 1 � b* 0.29 0.38 0.24 0.34
PFP 0.56 0.51 0.26 0.47

DB75 3 65 4875 1 � b* 0.38 0.41 0.29 0.49
PFP 0.47 0.63 0.19 0.37

DB125 3 39 4875 1 � b* 0.45 0.56 0.31 0.54
PFP 0.39 0.56 0.19 0.35

DB195 3 25 4875 1 � b* 0.45 0.58 0.32 0.57
PFP 0.45 0.64 0.17 0.34

NAM and DAM900 5900 1 � b* 0.40 0.60
PFP 0.47 0.51

NAM and DB25 3 36 5900 1 � b* 0.27 0.33
PFP 0.52 0.64

NAM and DB50 3 18 5900 1 � b* 0.38 0.53
PFP 0.46 0.58

NAM and DB100 3 9 5900 1 � b* 0.42 0.60
PFP 0.46 0.51

NAM and DB150 3 6 5900 1 � b* 0.39 0.57
PFP 0.46 0.59
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1�b* between both approaches were of such size that
the four-step genome scan seems more promising for
detecting epistatic QTL in the assumed metabolic path-
way than the three-step genome scan irrespective of the
mating design. Therefore, the comparison between the
examined mating designs was based only on results of
the former.

Power to detect three-way interactions under differ-
ent mating designs: Despite a comparable number of
RILs in the two data sets NAM and DAM4875, higher
power estimates were found for the latter (Table 2). This
observation is attributable to the average frequency of
the B73 allele, which is closer to 0.5 for DAM4875 than
for NAM. Crossing schemes resulting in RILs with an
average allele frequency of 0.5 have a high power to
detect QTL because the probability that some QTL
haplotypes have only a very small class size is minimized
(Verhoeven et al. 2006). For the detection of higher-
order epistatic QTL this issue is even more important
because the number of possible QTL haplotypes in-
creases with an increasing number of QTL. But this
reduces the probability that all QTL haplotypes are
present in the data set.

The average frequency of the B73 allele was the same
for the RILs of DAM4875 and SRR. Nevertheless, in our
study a higher power to detect three-way interactions
was found for the former. This is in contrast to a result of
Verhoeven et al. (2006), who observed a considerably
higher power to detect epistatic QTL for SRR than for
the same number of RILs derived from a diallel. The
different findings can be explained by the different
assumptions underlying the simulations. Verhoeven

et al. (2006) assumed a distinct allele for each paren-
tal inbred. In this case large numbers of small popula-
tions show, due to the increased probability that some
QTL haplotypes have only very small class size, a lower
power to detect epistatic QTL than do a small number of
large populations. However, the assumption made by
Verhoeven et al. (2006) ignores the consequences of
genetic drift that for real data not all QTL segregate in
every population (Xu 1996). In our study this fact was
considered by using SNP haplotype data of 26 inbreds
as a basis of the simulations. Consequently, the mating
designs resulting in a large number of small popula-
tions have indeed the above-mentioned disadvantage
but this is compensated by the large number of indi-
viduals within populations segregating for the QTL.

The probability that QTL are segregating is increased
in individual line crosses by using parental inbreds that
are phenotypically the opposite extremes for the trait of
interest (Xu 1998). However, this may not be helpful for
detecting QTL for other traits. Furthermore, results of
Burkhamer et al. (1998) suggest that inbreds showing a
large genetic distance on the basis of molecular markers
also strongly differ in their alleles at QTL. Therefore, we
examined the DB approach by using only those parental
combinations of the diallel to establish RILs that show,

on the basis of all marker loci, the maximum genetic
dissimilarity. A higher power to detect three-way inter-
actions was observed for DB125 3 39 and DB195 3 25
than was found for NAM, SRR, and DAM4875. This
indicated that the DB design is promising for increasing
the probability that QTL are segregating in populations.

Nevertheless, we observed a lower power to detect
three-way interactions for DB75 3 65 than for DB125 3

39 and DB195 3 25. The opposite result was expected,
on the basis of the average genetic dissimilarity among
the parental inbreds and the higher number of RILs per
segregating population (Xie et al. 1998). Presumably,
the reason for our observation is the insufficient sam-
pling of QTL alleles of the base population if the
number of selected parental combinations is too low
(Muranty 1996; Wu and Jannink 2004).

In summary, the results of our study indicated that for
a genetic dissimilarity among the parental inbreds such
as that observed in this study the crossing schemes
underlying the data sets DB125 3 39 and DB195 3 25
are the most promising designs to detect three-way in-
teractions. However, our results also suggest that only
RILs derived from optimally allocated DB designs show
an increased power to detect three-way interactions.
Nevertheless, the project ‘‘molecular and functional
diversity of the maize genome’’ applies the crossing
scheme underlying the NAM data set to construct RIL
populations. The reasons are: (i) The common refer-
ence parent B73 has been the subject of extensive ge-
netic and genomic studies (e.g., Morgante et al. 2005),
and (ii) crossing the 25 diverse inbreds to the well-
adapted inbred B73 facilitates both the development
and the phenotypic evaluation of RILs.

Factors influencing the power and PFP to detect
higher-order epistatic QTL in NAM: Genetic architecture
of the trait: A higher power 1�b* of detecting three-way
interactions was observed with a single pathway influ-
encing the phenotypic trait than with three pathways
influencing the phenotypic trait (Table 2). This is due
to the increased proportion of variance explained by a
single pathway. Thus, if pathways explain unequal pro-
portions of the genotypic variance, the power to detect
epistatic interactions is higher for pathways explaining
a large proportion of the genotypic variance than for
pathways explaining a small proportion of the genotypic
variance. Higher PFP was observed for the one-pathway
scenario than for the three-pathway scenario. This find-
ing can be explained by the higher power to detect
three-way interactions in the former than in the latter
scenario.

In our study the genotypic values for the four-locus
genotypes were arranged in such a way that they are
interpretable as molecular interactions among genes
(Figure 1) ( Jayaram and Peterson 1990). Nevertheless,
for each individual pathway genic effects of four single
loci, six two-way interactions, four three-way interac-
tions, and one four-way interaction can be estimated
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(Yang 2004). In addition, the variances s2
A;s

2
AA;s

2
AAA,

and s2
AAAA can be calculated. The variances s2

A and s2
AA

determined in our study under the assumption of allele
frequencies of 0.5 agree well with those reported by
Wolf et al. (2000) for various traits in an F2 maize
population. Thus, we conclude that the assumptions
underlying our simulations were realistic.

For pathways consisting of k QTL and showing mono-,
di-, and trigenic effects similar to those of our study, a
higher power to detect three-way interactions when k ¼
3 is expected. This is because a lower number of genic
effects is influencing the genotypic value and, thus, each
single genic effect is explaining a higher proportion of
the genotypic variance. The opposite is expected for k . 4.

Detection method: For the detection of three-way inter-
actions, the four-step genome scan requires that the
genic effects of at least one single locus and one two-way
interaction are different from zero in addition to the
genic effect of the three-way interaction. In contrast,
using the three-step genome scan for the detection of
three-way interactions the main effect of the QTL does
not matter and only the interaction effect of all three
QTL with the genetic background must be different
from zero. Epistatic interactions among QTL cause
QTL 3 genetic background interactions ( Jannink and
Jansen 2001) and, thus, the effect of the latter increases
in our study with the size of the genic effects of two-,
three-, and four-way interactions. Therefore, for both
QTL detection approaches a higher power to detect
three-way interactions is expected if genotypic values are
assumed for the four-locus genotypes such that all genic
effects have a higher absolute value than in our study.
The opposite result is expected if all genic effects show
a lower absolute value than in our study.

Different trends of the power to detect three-way in-
teractions are expected for the two QTL detection ap-
proaches, if all genic effects of at least one of the steps,
a single locus or two-way interactions, decrease. While a
strong reduction in power to detect three-way interac-
tions is expected by using the four-step genome scan,
only a weak reduction is expected for the three-step
genome scan. In the extreme, if all genic effects of one
of these steps are zero, three-way interactions can be
detected only by using the three-step genome scan. How-
ever, this case is very unlikely (Marchini et al. 2005).
Further research is needed concerning the most prom-
ising detection method for epistatic interactions under
different genetic architectures.

Probability of QTL segregation: The probability of QTL
segregation is influenced by (i) the average and (ii) the
variance of the genetic dissimilarity among the parental
inbreds of the RILs. The higher the average genetic
dissimilarity among the parental inbreds, the higher the
power is to detect three-way interactions for RILs de-
rived from all mating designs. For a low average genetic
dissimilarity the opposite result is expected. The opti-
mal number of populations and RILs per population is

not influenced by the average genetic dissimilarity among
the parental inbreds. In contrast, the higher the vari-
ance of the genetic dissimilarity among the parental
inbreds, the larger the difference in power 1�b* is be-
tween mating designs considering genetic dissimilar-
ities, like DB designs, and mating designs neglecting this
information. For a low variance of the genetic dissimi-
larity the opposite result is expected.

Genetic map distance between marker loci and QTL: In
our study all SNPs, and also those treated as QTL, were
included in the statistical analyses. This is because the
proposed mapping strategy requires that markers are
available for the QTL itself, which is true if the genome
sequence of all RILs is known. Due to the fast progress of
genome sequencing techniques (Churchill et al. 2004;
Shendure et al. 2004) this is a realistic assumption in the
foreseeable future, which maximizes the power to
detect three-way interactions.

A decreased power to detect three-way interactions
and an increased PFP are expected if RILs are geno-
typed for a lower number of SNPs. This is attributable
to the decreased probability of substantial LD between
QTL and marker loci (Marchini et al. 2005). Further-
more, the application of the proposed mapping strategy
to true data sets for which the genome sequence of all
individuals is not available requires major modifica-
tions, the most important one being that in this case
QTL detection is based on LD between QTL and adja-
cent molecular markers and, thus, the correlation struc-
ture among the RILs must be considered. Furthermore,
in some cases it might be necessary to (i) assume a cer-
tain QTL allele for each parental inbred or (ii) use
multilocus haplotype data to infer parental allelic rela-
tionships at QTL (Jansen et al. 2003).

Heritability of the trait: Increasing h2 from 0.5 to 0.8
resulted for all examined data sets and both numbers of
QTL in a considerably higher power to detect three-way
interactions. This is because for h2 ¼ 0.8 the environ-
mental influence on the phenotypic trait is reduced in
comparison with h2 ¼ 0.5. Hence, increasing h2 by con-
ducting field experiments with several replications in sev-
eral environments is a promising approach to increase
the power to detect three-way interactions. However, in
studies with a fixed budget this implies a reduction of
the number of RILs to be tested in field experiments.
Further research is needed concerning the optimal
allocation of resources with respect to the number of
RILs and the intensity of their phenotypic evaluation.

A higher PFP was observed for scenarios underlying
a high heritability than for scenarios underlying a low
heritability. This finding can be explained by the higher
power to detect three-way interactions in the former
than in the latter scenario.

Number of examined RILs: Up to now, published QTL
mapping experiments with replicated trials mostly em-
ployed between 100 and 200 progenies (Melchinger

et al. 1998). Experiments of this size have a low power to
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detect epistatic QTL (Mihaljevic et al. 2005). However,
in our study the power to detect three-way interactions
with 5000 RILs derived from a nested design was rela-
tively high for both the 4-QTL and the 12-QTL sce-
narios. Also the observed PFP of �0.54 (4 QTL) and
0.29 (12 QTL) was at an acceptable level considering the
complex genetic architecture. Nevertheless, near-isogenic
lines should be used to validate the identified epistatic
interactions. For the validation of each identified three-
way interaction, eight near-isogenic lines are required.

For detection of three-way interactions in pathways
more complex than that of our study, the NAM data set
must be complemented with additional RILs. Further-
more, our results suggest that the optimally allocated
DB approach is more appropriate for complementing
the NAM data set than deriving additional RILs from a
diallel.
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