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ABSTRACT 
Sorghum (Sorghum bicolor (L.) Moench) is a major staple food cereal for millions of people 
worldwide. The sorghum genome, like other species, accumulates deleterious mutations, likely 
impacting its fitness. Though selection keeps deleterious mutations rare, their complete removal 
from the genome is impeded due to lack of recombination, drift, and their coupling with favorable 
loci. To study how deleterious mutations impact agronomic phenotypes, we identified putative 
deleterious mutations among ~5.5M segregating variants of 229 diverse sorghum lines. We provide 
the whole-genome estimate of the deleterious burden in sorghum, showing that about 33% of 
nonsynonymous substitutions are putatively deleterious. The pattern of mutation burden varies 
appreciably among racial groups; the caudatum shows higher mutation burden while the guinea has 
lower burden. Across racial groups, the mutation burden correlated negatively with biomass, plant 
height, Specific Leaf Area (SLA), and tissue starch content, suggesting deleterious burden decreases 
trait fitness. Putatively deleterious variants explain roughly half of the genetic variance. However, 
there is only moderate improvement in total heritable variance explained for biomass (7.6%) and 
plant height (5.2%). There is no advantage in total heritable variance for SLA and starch. The 
contribution of putatively deleterious variants to phenotypic diversity therefore appears to be 
dependent on the genetic architecture of traits. Overall, our results suggest that including putatively 
deleterious variants in models do not significantly improve breeding accuracy because of extensive 
linkage. However, knowledge of deleterious variants could be leveraged for sorghum breeding 
through genome editing. 
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INTRODUCTION 

Plant genomes continually accumulate new mutations due to population demographic history [1], 
random drift [2], the mating system [3], domestication [4,5], and linked selection due to genetic 
interactions [6,7]. While a sizeable portion of such new mutations are neutral [8,9], a small portion 
of mutations are likely to be deleterious because they disrupt evolutionarily conserved sites, protein 
function [10,11], or gene expression [12] in a way that results in negative impacts on fitness. 
Therefore, the elimination of deleterious mutations from breeding populations has been suggested 
as a prospective avenue for crop improvement [13].  

Sorghum (Sorghum bicolor (L.) Moench, 2n = 20) is an important and versatile crop that is grown for 
food, forage, and fuel. It was domesticated from its wild ancestor about 8,000 years ago in Africa 
[14]. Five major morphological forms have traditionally been recognized, namely bicolor, caudatum, 
durra, guinea, and kafir. While these races are widespread in distinct regions of Africa reflecting the 
diverse agro-eco-environments [15,16], sorghum has maintained minimal genome redundancy due 
to the absence of any whole genome duplication for over 70 million years [17,18]. However, 
inbreeding sorghum is likely to accumulate more slightly deleterious mutations when compared to 
an outcrossing species, which accumulates strong recessive deleterious mutations that reduce the 
mean fitness of the population over time [13]. Nonetheless, there is accumulating evidence for the 
impact of enhanced homozygosity [19], relaxed selection [20], and low levels of outcrossing [21,22] 
on the frequency of deleterious polymorphisms in selfing populations. Although the relative 
contributions of these processes to mutation load has long been debated, both theoretical and 
experimental evidence suggests that reduced population size effects usually outcompete processes 
that enhance purging of deleterious mutations caused by selfing [20,23–25] leading to an influx of 
deleterious mutations into selfing species. 

Modern breeding and domestication results in an increased genetic load in domesticates when 
compared to their wild progenitors, and a decreased load in elite cultivars when compared to 
landraces [4,26]. The demographic history and inbreeding allow deleterious variants of weaker effect 
to reach appreciable frequencies owing to random drift, which can contribute significantly to 
mutation load and affect fitness-related traits [27]. An estimated 20 to 30% of nonsynonymous 
variants are deleterious in rice [5], Arabidopsis [28], maize [29], and cassava [4]. Renaut and 
Rieseberg [30] identified an excess of nonsynonymous Single Nucleotide Polymorphisms (SNPs) 
segregating in domesticated sunflower and globe artichoke relative to natural populations. 
Similarly, 20 to 40% of protein-coding SNPs are predicted to have a deleterious allele in maize [29]. 
Indeed, deleterious mutations are predicted to be enriched near regions of strong selection [26,27], 
pointing to a potentially important role for deleterious variants in shaping agronomic phenotypes. 

Genomic Selection (GS) can accelerate crop breeding when compared to conventional phenotypic 
selection approaches. In the Genome-Wide Prediction (GWP) models employed in GS, the genetic 
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variance is modeled by accounting for either the biological additive and dominant effects of the 
markers, which improves the accuracy of predictions [31,32]. Genes associated with complex traits 
carry an uncertain number of deleterious mutations distributed across the genome, and such a 
mutational load may significantly contribute to the total phenotypic variation of traits [33]. Because 
deleterious mutations can occur in both homozygous and heterozygous states depending on the 
genetic context, trait-specific and genetic-context based GWP models can capture the effects of 
deleterious mutations. Therefore, GWP models encompassing deleterious mutations are expected to 
account for the total genetic contribution to, and improve the prediction ability of, complex traits 
[33]. However, the improvement of GWP will depend on how strongly correlated deleterious 
variants are to all other variants. 

In this study, we examine the contribution of putatively deleterious variants to phenotypic variation 
in sorghum. We used a racially, geographically, and phenotypically diverse biomass sorghum 
population that represents the ancestry of five major sorghum types [34]. All accessions were 
phenotyped for two agronomic traits, dry biomass (DBM) and plant height (PHT), and for two 
physiological traits, specific leaf area (SLA) and tissue starch content (TSC) under field conditions. 
We performed whole-genome resequencing (WGS) on 229 sorghum lines and identified genome-
wide putative deleterious mutations. Our main objectives of this study were to determine (1) 
whether empirical patterns of deleterious mutational burden differ among sorghum racial groups; 
and (2) whether deleterious variants improve prediction ability of complex traits, and if so, whether 
such abilities differ over phenotypic traits that have different genetic architecture. To address these 
questions, we first identified the genome-wide putative deleterious mutations and their biological 
effect sizes and then, estimated an individual mutation burden and its effect on phenotypic traits. 
Next, taking advantage of a Bayesian genomic selection framework [35], we tested the biological 
significance of deleterious variants in the prediction of DBM, PHT, SLA, and TSC. 

 
 
 
RESULTS 
Identification of putatively deleterious mutations 
We resequenced the whole genome of 229 diverse biomass sorghum to an average depth of 4X and 
identified ~5.5M segregating variants (see Methods), of which 6.3% are located in coding regions. 
To determine the distribution of deleterious mutations in the sorghum genome, we first annotated 
deleterious variants using a SIFT score (SIFT<0.05) that predicts an amino acid substitution effect on 
protein function [36]. Approximately 33% of the total nonsynonymous substitutions are putatively 
deleterious (average SIFT score of 0.08), while 67% are predicted as tolerant mutations (average SIFT 
score of 0.47). The majority (75%) of nonsynonymous deleterious mutations had an average SIFT 
score of <0.01 (Fig. S1a). All identified deleterious mutations show comparably similar distributions 
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among all chromosomes (P = 0.34; Fig. S1b) and arise from noncentromeric regions of the 
chromosomes (Fig. S2). Consistent with population genetic expectations, all deleterious mutations 
show a low overall allele frequency (average MAF=0.07, Fig. S1c). 
  
We then estimated the derived allele frequency (DAF) spectrum based on ‘derived deleterious allele’ 
which is defined as a minor allele among multi-species alignment [33]. This revealed that a large 
proportion of deleterious mutations have a lower DAF (<0.05)(Fig 1a). While DAF is strongly 
negatively associated with GERP scores [33](Fig 1b), it is positively associated with SIFT scores (Fig. 
S3). These results corroborate previous studies showing that selection acts to keep deleterious 
mutations rare [29], and support the proposition for a combined use of SIFT and GERP scores as 
quantitative measures of an observed variant for its long-term fitness consequences [33]. 
 

  
Figure 1 Deleterious mutations in the sorghum genome. (a) Site allele-frequency spectrum of deleterious 
mutations in the sorghum genome. The Derived Allele Frequency (DAF) distribution of alleles is shown where 
a minor allele from multi-species alignment was considered as a derived allele [33]. (b) The allele frequency of 
the derived alleles in bins of different GERP score. 
 
 
 
Distribution of effect sizes for deleterious variants 
For each phenotype, we estimated the additive effect sizes explained by both deleterious variants 
(High-GERP deleterious variants; hereafter called HGERPDEL-SNPs) and random variants that are not 
in linkage disequilibrium (LD) but have similar allele frequency range of deleterious variants across 
the genome. We compared the full density distribution of the effect sizes of both deleterious and 
random variants to avoid the winner’s curse [37,38], and examined whether deleterious variants 
effect sizes are overall larger in magnitude than random variants (Fig 2). 
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Our results indicate that the density distribution of the effect sizes of both deleterious and random 
variants show slightly different patterns. The density distribution of deleterious variants extends 
much farther than the distribution of random variants at the highest range (Fig 2)[37]. Such a density 
distribution could be due to a reduced density peak for deleterious variants; however, it was 
consistently observed for all traits (Fig. 2a-d). When compared at the same threshold (top 1% and 
25%), deleterious variants have significantly higher average effect sizes of 30.4% (Fig. 2a1-d1) and 
26.7% (Fig. 2a2-d2) across four traits over nondeleterious variants, respectively (Fig 2, Inset). Plant 
height has the largest effect deleterious variants as compared to other traits. These results suggest 
that a minor proportion of deleterious variants appear to have larger biological effect sizes when 
compared to nondeleterious variants that could cumulatively affect phenotypes. This is consistent 
with recent studies showing rare deleterious variants having much greater effect sizes than those of 
common variants in maize [33], human [38,39], and mouse [40]. 
 
 

 
Figure 2 Smoothed estimate of density distribution of regression coefficients associated with deleterious 
variants and common variants for phenotypic traits ((a) biomass, (b) plant height, (c) Specific Leaf Area (SLA), 
(d) tissue starch content) for deleterious variants (red) and random variants (black) for high GERP deleterious 
variants (HGERPDEL-SNPs). The yellow vertical band indicate the extent of an additional density distribution of 
deleterious variants as compared to the density distribution of random variants. Inset: Barplot of the effect 
sizes of deleterious variants and nondeleterious variants based on the top 1% and 25% for biomass (a1,a2), 
plant height (b1,b2), SLA (c1,c2), and starch (d1,d2). 
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Deleterious mutation burden and its effect on phenotypes 

We estimated the burden of deleterious variants as the count of deleterious variants corrected for 
the number of variants scored in all genotypes of the population (Fig. 3). Our burden estimation 
reveals a substantial variation for mutation burden among racial groups (P = 3.14 x 10-05) under the 
HGERPDEL-SNPs model (Fig. 3). We observed that caudatum is significantly enriched, with an average 
of 36%, for homozygous mutation burden as compared to other racial groups. Compared to the 
median burden across all racial groups, guinea has a proportionately lower burden (-20%), while 
caudatum has a proportionately higher burden (+49%). On average, an individual typically carries 
0.0112 (s.d. 0.006), 0.0124 (s.d. 0.006), 0.0140 (s.d. 0.006), and 0.0178 (s.d. 0.007) mutation burden in 
the homozygous state in the guinea, durra, kafir and caudatum groups, respectively. Across all racial 
groups, individual mutation burden ranges from 0.001 to 0.038 under the HGERPDEL-SNPs model, 
suggesting that all racial groups showed variable mutation burden.   
 

 
Figure 3 Homozygous mutation burden estimated for different racial groups of sorghum under an 
evolutionary-based genomic model (HGERPDEL-SNPs). The derived allele is defined as a minor allele from multi-
species sequence alignments [33]. The total number of homozygous deleterious alleles identified within each 
individual was corrected for the total number of variants scored within each individual in order to avoid any 
bias in burden among individuals due to missing genotypic data. The horizontal broken line indicates the 
mean of burden across all groups. 
  

 

We further evaluated the underlying relationship of mutation burden with phenotypic traits. Four 
phenotypic traits were selected for this study: dry biomass, plant height, SLA, and tissue starch 
content. We observed a substantial phenotypic variation for all traits among racial groups (Fig. S4, 
biomass: P <0.001; height: P <0.05; SLA: P <0.001; starch: P <0.05), with highly heritable variation 
observed for plant height (H2=0.87) and biomass (H2=0.73), consistent with previous studies [34]. We 
also found strong racial group-specific correlations among traits (Fig. S5). Using a simple linear 
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regression model between mutation burden and phenotypic traits, across all racial groups, we 
consistently found a negative relationship of mutation burden with all traits (Table S1), suggesting 
that deleterious variants decrease trait fitness. 
  

 

Accounting for deleterious variants in genome-wide prediction 
We tested whether incorporating putatively deleterious variants could inform genomic selection 
(GS) models and improve phenotype prediction. Deleterious mutations identified from WGS were 
used as priors and integrated into a genomic prediction framework (Fig. 4). We quantified the 
amount of genetic variance, heritability, and model improvement by deleterious variants and 
compared with that of random variants. Based on a variance partitioning approach with a two-
kernel model (see Methods), the model with putatively deleterious variants explained roughly half 
of the genetic variance (biomass: 52%, plant height: 54%, SLA: 48%, and starch: 46%) (Fig. 4a). 
However, there was only a moderate improvement in total heritable variance explained for biomass 
(7.6%, h2 = 0.24 against 0.22 for random variants) and plant height (5.2%, h2 = 0.36 against 0.34 for 
random variants), and no advantage for SLA and starch (Fig. 4b) as compared to random variants. 
 
To evaluate the predictive ability, we performed a five-fold cross-validation implemented in a 
GBLUP model with either the deleterious or the random SNP data sets. Consistent with the results 
of heritability, we observed an 8.1% and 4.2% improvement on predictive ability for biomass and 
plant height, respectively, while there was no improvement for SLA and starch (Fig. 4c). These 
results suggest that the contribution of putatively deleterious variants to phenotypic variation varies 
considerably among traits. 
 
 

 
 
Figure 4 Genome-wide prediction models incorporating putatively deleterious mutations. (a-b) Heritability 
estimates for all four traits using either a (a) two-kernel model or (b) single-kernel model. Heritability estimates 
for random variants are derived based on 100 independent sets that are randomly chosen across the genome 
from variants that are not in LD with deleterious variants. (c) Boxplots showing a five-fold cross validation 
prediction ability estimation for deleterious variants and random variants.  
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DISCUSSION 

Sorghum, a genus that evolved across diverse environments in Africa, exhibits a wide range of 
phenotypic diversity [15,41,42]. This raises the question of whether sorghum racial groups carry 
variable deleterious load, allowing the mutation consequences to be tested for phenotypic diversity. 
In this study, we WGS 229 sorghum lines and defined genome-wide putative deleterious mutations 
using SIFT and GERP scores. All racial groups of sorghum showed variable mutation burden 
(ranged from 0.001-0.038) that correlated negatively with phenotypic traits. We observed that a 
minor proportion of deleterious mutations had larger biological effects. We further noticed that the 
prediction ability of the genome-wide prediction models encompassing deleterious variants are 
largely trait-dependent. 
  
Combining the criteria of SIFT and GERP scores, we first show that sorghum racial groups 
accumulate considerable amounts of deleterious mutations in the genome, estimated to be ~33% of 
total nonsynonymous substitutions (Fig. 1). Although the number and frequency of such mutations 
within a population depends on population size, our results match well with previous studies that 
estimated 20 to 30% of nonsynonymous variants to be deleterious in several crop species, including 
model plant species [4,5,28,29]. Considering only highly conserved (GERP>2) and frequent 
(DAF>0.9) mutations, there are 63 nonsynonymous deleterious mutations across racial groups, and 
distributed across all chromosomes. These variants are likely a combination of variants of important 
domestication targets, recent pseudogenes, and some truly deleterious variants that are the product 
of drift.  
  
We next estimated an individual mutation burden as the count of deleterious variants corrected for 
the number of variants scored, which differed considerably among individuals and racial groups 
(Fig. 3). It is notable but expected given that different racial groups have had varying patterns of 
population dynamics, selection intensities, and domestication histories that could alter the influx of 
deleterious mutations [14,15,17]. Contrasting deleterious burden has previously been reported in 
different populations of crop species [4,5,30], and humans [43–45]. Comparatively, the caudatum 
group appears to have a higher mutation burden than the guinea group; the oldest of the specialized 
sorghum races [46,47]. We propose that the higher mutation burden of the caudatum group might be 
potentially related to the population bottleneck, resulting in a smaller population size that increases 
the chances of inbreeding, genetic homogeneity, and an increased influx of deleterious mutations 
[13,30,33]. On the other hand, a lower mutation burden in the guinea might be due to its higher 
outcrossing rates, which can reach up to 20% when compared to other races [48,49]. Our results, 
therefore, suggest that, first, negative selection is less effective at removing weakly deleterious 
mutations, yielding variable mutation burden among racial groups. Second, the combined effects of 
a bottleneck and directional selection during domestication [43,50] can have an important impact on 
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the deleterious burden even in smaller racial groups of sorghum in which founder events can be 
more frequent [51,52]. 
  
Although informative, our estimation of mutation burden has some important limitations. First, the 
deleterious mutations identified in the population were based on the degree of sequence 
conservation that is often poorly constructed. Second, our derivation of deleterious mutations does 
not include noncoding or structural variants, which can contribute considerably to the total load of 
mutations [53,54]. Third, our burden estimation assumes equal fitness effects for all mutations, 
which is unlikely, as mutations can have different fitness effects that can vary with environments 
[55]. Fourth, we considered the same sign of the effect when estimating the burden, which would be 
misestimated, as some deleterious mutations may be locally adaptive, or neutral [53,56]. 
Nonetheless, despite these caveats, our findings revealed a substantial genomic burden of 
deleterious mutations in sorghum. 
  
We investigated the phenotypic effects of deleterious mutations (Table S1). We found negative 
correlations between mutation burden and phenotypic traits, suggesting a considerable cost of 
deleterious mutations on phenotypic traits [33] in a species that has been subjected to recent 
demographic expansion [50]. Consistently, we find a minor proportion of deleterious mutations with 
demonstrably large biological effects, which likely have an impact on phenotypes (Fig. 2). The fate 
of such large effect mutations on phenotypes is, however, unclear and has been actively debated as 
to whether such mutational effects primarily attributable to unconditional deleteriousness or can 
provide adaptive heritable variation [57]. Nonetheless, previous studies revealed that post-
domestication mutations resulted in novel variations of genes in sorghum, and that neodiversity 
contributed to new adaptations in sorghum [57,58]. 
  
Across four traits, we find that putatively deleterious alleles explain roughly half of the genetic 
variance (46%-54%), but there is only a moderate improvement in total heritable variance explained 
for biomass (7.6%) and plant height (5.2%). Additionally, there is no advantage for SLA and starch 
(Fig 4). Such a difference in the contribution of deleterious alleles to traits was recently observed in 
maize where dominance contributed substantially to grain yield while phenology traits appeared to 
be largely additive [33]. Though the effects of mutations being deleterious or compensatory depends 
greatly upon the genetic background into which that mutation is incorporated [13], the trivial 
contributions of mutations to SLA and starch indicate that such mutations could be either nearly 
neutral or negatively synergistic. Our results therefore support the proposition that deleterious 
mutational effects vary with phenotypic traits and are often larger for fitness-related quantitative 
traits, while they are unclear for traits that are not directly linked to fitness [59]. Fitness-related 
quantitative traits, which are expected to have a more complex genetic architecture, could 
potentially carry a higher polygenic mutation burden that could considerably affect phenotypes [60]. 
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Such propositions are also in line with the longstanding understanding that fitness-linked 
quantitative traits that show directional dominance generally exhibit inbreeding depression 
[41,61,62], which is strongly associated with the degree of deleterious mutations in the genome [29]. 
  
Finally, although our study did not account for sampling error while estimating an individual 
deleterious variant effect, which is generally greater for rare variants [38], our heritability estimates 
are consistent with the prediction abilities of phenotypic traits. Our work, therefore, adds to ongoing 
GWP efforts exploring the cumulative effects of deleterious mutations on phenotypic diversity 
[13,33]. However, since rare deleterious variants are less correlated with each other and their 
associations greatly suffer from low statistical power [59,63], employing either gene- and/or family-
based approaches [38,40,63], or leveraging the phenotypic patterns [53] in which deleterious 
mutations have recognizable phenotypic consequences would aid future studies in determining how 
rare deleterious mutations within an individual shape its phenotype [53]. 
  
 
CONCLUSIONS 
We used phenotypic and genomic data from different racial groups of sorghum to show that 
sorghum accumulates a considerable number of deleterious mutations in the genome. Mutation 
burden differed substantially among racial groups where it negatively correlated with phenotypes. 
Genomic selection models encompassing deleterious mutations show variable phenotypic 
predictions across traits and, given the relatively high level of population structure in sorghum, 
disentangling deleterious effects at the single variant level would take a tremendous amount of effort 
and recombination. Deleterious variants could be prioritized through work with intermediate 
phenotypes or with more extensive evolutionary analysis among closely related species. Both of 
these avenues, if combined with high throughput genome editing, could be used to systematically 
start removing deleterious variants from elite biomass sorghum. 
  

 

 

MATERIALS AND METHODS 

Plant material, field experiments and phenotypic data 
For this study, a diversity panel with 869 biomass sorghum lines was assembled [34,64]. Although 
phenotypic data for the entire panel was collected, only a subset of 229 lines for which WGS data 
were available was included in the study. 
 
Field experiments were conducted in Illinois during 2016 in an augmented block design that 
consisted of 960 4-row plots with a row length of 3 m, 1.5 m alleys and 0.76 m row spacing. All plots 
were arranged in 40 rows and 24 columns. Target density of plant population was approximately 

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/357418doi: bioRxiv preprint 

https://doi.org/10.1101/357418
http://creativecommons.org/licenses/by-nc-nd/4.0/


270,368 plants ha-1 and experiments were planted in late May and harvested in early October. Plant 
height was measured from the ground to the uppermost leaf whorl 16 weeks after planting and 
averaged across the plot. Biomass data was collected at harvesting using a 4-row Kemper head 
attached to the John Deere 5830 tractor. A plot sampler equipment with near infrad-red sensor 
(model 130S, RCI engineering) was used to measure wet weight of total biomass (kg) and to quantify 
biomass moisture (%) and starch (%) contents of plants [65] in the 2 middle rows of each 4-row plot. 
Biomass yield in dry metric tons per hectare was calculated as: dry metric tons per ha = total plot 
wet weight (kg) x (1 − plot moisture) / (plot area in square meter /10,000) [64]. 
 
To estimate specific leaf area (SLA), the youngest fully expanded leaf from two randomly selected 
plants of the middle two rows of each plot were excised just above the ligule 60 to 70 days after 
planting. Damaged leaves were avoided. Excised leaves were then re-cut under water, and the cut 
surface kept immersed. In the laboratory, three 1.6 cm leaf discs were collected from the middle of 
each leaf whilst avoiding the mid-rib. Leaf discs were immediately transferred to an oven set at 60°C 
for two weeks. The dry mass of leaf discs was determined, and SLA was expressed as the ratio of 
fresh leaf area to dry leaf mass (cm2 g-1). 
 
Statistical analysis of phenotypic data  
Phenotypic data analysis was conducted according to experimental design, which consisted of a 
series of incomplete blocks connected through common checks. The following model was used to 
get best linear unbiased prediction (BLUPs) for all genotypes included in the field trial: 
 
yijkl = µ + gi + ej + rk(j)+ bl(jk)+ geij + εijkl	

where µ is the overall mean, gi is the random effect of the ith genotype, ej is the random effect of the 
jth location, rk(j) is the random effect of the kth set nested within the jth location, bl(jk) is the random effect 
of the lth incomplete block nested within the jth location and the kth set, geij represents the effect of 
genotype-by-environment interaction, and εijkl is the residual error for the ith genotype in the lth 

incomplete block within the kth set in the jth location.  
 
For the purpose of estimating the broad-sense heritability (H2) of each phenotype, we estimated 
variance component using the restricted maximum likelihood. All effects were assumed to be 
random effects. Broad-sense heritability on an entry-mean basis was calculated as H2 = σ2G / (σ2G + 
σ2GXE / number of location + σ2e / number of location x number of replication), where σ2G is the variance 
among accessions, σ2GXE is the accession-by-environment variance, and σ2e is the error variance. All 
analyses were conducted in R software (R Development Core Team, 2015) with package lme4.  
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Genotyping 
Genomic DNA (gDNA) was extracted using the CTAB method and quantified using picogreen 
(Molecular Probes, Eugene Oregon, USA) on a microplate reader of Synergy HT (BioTek, Vermont, 
USA). After preprocessing steps of the genomic DNA samples, ten libraries were prepared (24 
samples in each library) and sequenced on HiSeq 4000 (PE_2x150) using sequencing kit version 1. 
Fastq files were demultiplexed with the bcl2fastq v2.17.1.14 conversion software of Illumina. We 
used Sentieon DNAseq [74] and a series of custom bash scripts to process the raw reads. Briefly, 
fastq files were aligned to the Sorghum bicolor reference genome version 3.1 
(https://phytozome.jgi.doe.gov). PCR duplicates were removed, base quality was recalibrated 
based on a ‘known SNPs’ file, and recalibrated files were processed through the Haplotype Caller 
(HC). No realignment around indels was performed. The dataset therefore contains 239 samples, 
corresponding to 229 unique accessions, of which 7 had 1 or 2 replicates. 

To create a list of “known SNPs” for the recalibration step, the HC pipeline was run without 
recalibration on the list of 239 BAM files. The output was filtered removing SNPs that had a number 
of heterozygote genotypes across all accessions greater than 10% and/or a number of heterozygote 
genotypes greater than two times the number of minor alleles (hereafter referred to as 
“homozygosity-based filter” [66]). In addition, “SNP clusters”, defined as three or more SNPs 
located within five base pairs (bp) were also filtered out. Clusters of SNPs are often generated by 
misalignment and were conservatively considered as spurious. The filtered list of SNPs was used as 
“known SNPs” to recalibrate the BAM files and to generate a final list of SNPs. To increase 
calibration accuracy, additional vcf files were also used as “known SNPs”. These vcf files were 
generated applying the same pipeline as described above to the publicly available fastq files of 42 
Sorghum bicolor from [67] and an unpublished dataset of 302 Sorghum bicolor accessions kindly shared 
by Todd Mockler. The vcf file generated by the HC contained biallelic SNPs (n=22,359,733) and were 
further filtered to only retain SNPs with at least 4X coverage (n=21,865,512), and with a non-missing 
genotype in at least 40% of the samples (n=14,535,156). After removing SNPs clusters and applying 
homozygosity-based filters, the final dataset contained 5,512,653 SNPs, which were used for further 
analyses. 
 
Identifying putatively deleterious mutations 
The substitution of amino acid effect on protein function was predicted with the SIFT algorithm [36]. 
A nonsynonymous mutation with a SIFT score <0.05 was defined as a putative deleterious mutation. 
In addition to SIFT, we also used genomic evolutionary rate profiling (GERP>2) [35] estimated from 
a multi-species whole-genome alignment of six species including Zea mays, Oryza sativa, Setaria 
italica, Brachypodium distachyon, Hordeum vulgare, and Musa acuminate. SIFT (<0.05) together with 
GERP (>2) annotations were combined to identify the deleterious mutations in constrained portions 
of the genome and defined as high GERP deleterious SNPs (HGERPDEL-SNPs). These mutations were 
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used to estimate the mutation burden as the count of minor alleles present in each individual 
separately and corrected for the total number of non-missing sites within the individual [31]. 
Following Yang et al. [33], we defined the putative derived deleterious allele as a minor allele in the 
multi-species alignment. 
  
We calculated linkage disequilibrium (LD) between SNPs to identify random variants 
(nondeleterious) to be used as a control to compare with deleterious mutations. A subset of 100k 
random SNP markers were selected, and all possible pairwise r2 values were calculated using plink 
1.9 [68]. Then, 1% of all the possible pairwise calculations were plotted showing the relationship of 
distance between markers and r2. To define local LD structure across each chromosome, we also 
calculated the mean LD score [69] per marker. LD scores were calculated with a window of 1Mb 
using the software GCTA [69,70]. Each LD score was divided by the total number of SNPs within 
each window (Fig. S6). To identify SNPs in high LD with deleterious variants, we first explored the 
effect of windows size and r2 threshold on the number of SNPs selected (Fig. S7). Given the LD 
pattern observed, we used a window size of 250 kb and an r2 threshold of 0.9, meaning that if any 
marker within 250 kb of a deleterious variants has an r2 of 0.9 or higher, it would be excluded from 
further analysis. This yielded a list of ~1 million SNPs that were in LD with deleterious SNPs, which 
were excluded from all SNPs. An equal proportion of 100 sets of random variants with the similar 
allele frequency of deleterious variants were selected (Fig. S8). 
  
Estimating effect sizes of deleterious and common variants 
Effect sizes were estimated using the RR-BLUP model implemented in the R-package rrBLUP 
version 4.2 [71]. We fit a model y = 1µ + Zu + e, where y is a vector of BLUPs of phenotype; 1µ is an 
intercept vector; Z is an n xp incidence matrix (either deleterious or random variants) containing the 
allelic states of the p marker loci (z = {−1, 0, 1}), where −1 represents the minor allele; u is the p x 1 
vector of marker effects; and e is a n x 1 vector of residuals. Under RR-BLUP, u ~ MVN (0, Iσ2u) where 
σ2u is the variance of the common distribution of marker effects and was estimated using restricted 
maximum likelihood. 
  
Partitioning of genetic variance and genome-wide prediction 
We compare the variance explained by deleterious variants to that of an equal proportion of 
randomly sampled variants from the distribution of non-deleterious variants. Following the method 
of Brenton et al. [34], we used a two-dimensional sampling approach to create 100 equal-sized 
datasets of randomly sampled variants matched for minor allele frequency. For each trait, we fit the 
model separately for each of variant set (either deleterious variant or non-deleterious variant) and 
estimated phenotypic variance explained. 
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For each variant set (deleterious variant vs non-deleterious set), we fit a standard GBLUP model 
including only additive effects by fitting a linear mixed model of the following form: y = Zg + e, 
where y is  a vector of BLUPs of phenotype, the vector g is a random effect, the BLUP, which 
represents the GEBV for each individual, and Z is a design matrix indicating observations of 
genotype identities, and e is a vector of residuals. The genomic estimated breeding values (GEBV) 
were obtained by assuming g ~ MVN (0, Kσ2g), where σ2g is the additive genetic variance, and K is 
the square genomic relationship matrix based on SNP data, implemented in TASSEL [72]. Predictive 
abilities for all traits were evaluated using a five-fold cross-validation approach repeated 100 times 
and were implemented in the R statistical software.  
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Supplementary Information 
 

  

 
Fig S1 Frequency distributions of deleterious mutations. Sorting Intolerant From Tolerant (SIFT) 
distributions of (a) all deleterious mutations, (b) number of deleterious mutations estimated per coding 
regions in all chromosomes, and (c) allele frequency distribution of deleterious mutations. 
 
 
 
 
 
 

 
Fig S2 Gene deleterious mutations distribution in chromosomes 1 (a), 5 (b), and 8 (c). The yellow color 
vertical bar indicates a centromeric regions showing absence of genes or deleterious mutations. 
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Fig S3 Derived allele frequency (DAF) association with Sorting Intolerant From Tolerant (SIFT) scores, 
Derived allele was defined as a minor allele from a multi-species sequence alignments. SIFT was estimated 
using [41]. 
 
 
 
 

  
Fig S4 Boxplots of phenotypic data for biomass (a), plant height (b), specific leaf area (SLA, c), and tissue 
starch content (d) under different subpopulations of sorghum. 
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Fig S5 Correlations among traits either across all subpopulations (a) or within each subpopulation of durra 
(b), caudatum (c), kafir (d), and guinea (e) subpopulations. All circles around values indicates significance at 
P < 0.05. Orange circles indicate positive correlation while red circle represents a negative correlation. 
  
 
 
  
  
  
  
  

  
Fig S6 Mean linkage disequilibrium (LD) scores estimated for all chromosomes. 
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Fig S7 The number of single-nucleotide polymorphisms (SNPs) estimated under different parameters of 
window size and r2. 
  
  
  
  

  
Fig S8 Allele frequency distribution comparison for deleterious mutations (red) and non-deleterious variants 
(grey). 
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Table S1. Slopes estimated between mutation burden and phenotypic traits. 
 

 

Trait Estimate r2 P value

Biomass -17.22 0.004 0.367

Height -71.27 0.014 0.081

SLA -18.55 0.005 0.279

Starch -11.60 0.010 0.153
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