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Number of Background Markers for Relationship 
Estimation in Association Mapping

Jianming Yu,* Zhiwu Zhang, Chengsong Zhu, Dindo A. Tabanao, Gael Pressoir, 
Mitchell R. Tuinstra, Stephen Kresovich, Rory J. Todhunter, and Edward S. Buckler

Abstract
Complex trait dissection through association mapping provides a 
powerful complement to traditional linkage analysis. The genetic 
structure of an association mapping panel can be estimated by 
genomewide background markers and subsequently accounted 
for in association analysis. Deciding the number of background 
markers is a common issue that needs to be addressed in many 
association mapping studies. We fi rst showed that the adequacy 
of markers in relationship estimation infl uences the maximum 
likelihood of the model explaining phenotypic variation and 
demonstrated this infl uence with a series of computer simulations 
with different trait architectures. Analyses and computer simulations 
were then conducted using two different data sets: one from a 
diverse set of maize (Zea mays L.) inbred lines with a complex 
population structure and familial relatedness, and the other from 
a group of crossbred dogs. Our results showed that the likelihood-
based model-fi tting approach can be used to quantify the 
robustness of genetic relationships derived from molecular marker 
data. We also found that kinship estimation was more sensitive to 
the number of markers used than population structure estimation 
in terms of model fi tting, and a robust estimate of kinship for 
association mapping with diverse germplasm requires a certain 
amount of background markers (e.g., 300–600 biallelic markers 
for the simulated pedigree materials, >1000 single nucleotide 
polymorphisms or 100 simple sequence repeats [SSRs] for the 
diverse maize panel, and about 100 SSRs for the canine panel). 
Kinship construction with subsets of the whole marker panel and 
subsequent model testing with multiple phenotypic traits could 
provide ad hoc information on whether the number of markers 
is suffi cient to quantify genetic relationships among individuals.

ASSOCIATION MAPPING provides a powerful comple-
ment to traditional linkage analysis for understanding 

the genetic basis of complex traits (Lander and Schork, 
1994; Risch and Merikangas, 1996; Mackay, 2001; Doerge, 
2002; Darvasi and Shifman, 2005). Association mapping 
is now being performed in many species (Th ornsberry 
et al., 2001; Neale and Savolainen, 2004; Aranzana et al., 
2005; Lindblad-Toh et al., 2005; Breseghello and Sorrells, 
2006), far beyond the human disease studies (Hirschhorn 
and Daly, 2005; Wang et al., 2005) from which the method 
originated. In contrast to pedigree-based samples or 
designed mapping populations, many populations used 
in association mapping studies oft en have obscure com-
plex geographies and histories (Hey and Machado, 2003; 
Yu et al., 2006). Th is inherent genetic structure of an 
association mapping population, if unaccounted for, may 
lead to an excess of spurious results (Voight and Prit-
chard, 2005; Price et al., 2006; Yu et al., 2006; Zhao et al., 
2007). Many statistical methods have been proposed to 
account for population structure and familial relatedness: 
structured association (Pritchard and Rosenberg, 1999; 
Pritchard et al., 2000; Falush et al., 2003); genomic con-
trol (Devlin and Roeder, 1999; Devlin et al., 2001, 2004); 
mixed-model approach (Yu et al., 2006); and principal 
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component approach (Price et al., 2006). Th e essence of 
these approaches is to exploit information from random 
molecular markers across the genome to account for 
genetic relatedness in deriving the test statistics explicitly 
or through ad hoc adjustment.

One important concern in carrying out an associa-
tion mapping study with diverse germplasm is whether 
adequate background marker information was used to 
account for genetic relatedness. In many model species, 
recent advances in genomic technologies have enabled 
researchers to score thousands of single nucleotide poly-
morphisms (SNPs) in high-throughput fashion (Shendure 
et al., 2005; Syvanen, 2005). However, for many genetic 
studies performed in nonmodel species, the number of 
molecular markers scored across the association mapping 
panel is still limited by the cost of genotyping, the avail-
ability of the markers, and the complexity of the genome. 
In contrast, simple sequence repeats (SSRs), though much 
less abundant than SNPs, are another type of genetic 
markers that has been widely used. Among other factors, 
the balance between the greater discriminatory power of 
SSRs and the lower cost of SNPs may vary among species 
(Weir et al., 2006). Even in species for which the genome 
sequence and millions of SNPs are available, the combina-
tion of genotyping throughput and sample throughput 
is still a challenge (Syvanen, 2005). Nevertheless, this 
constraint should not hamper initiating association map-
ping studies with a smaller set of SSRs or SNPs. As was 
proposed in human, a multistage strategy (i.e., small-scale 
probing studies followed by a large-scale validation) would 
be a method of choice both scientifi cally and economically 
(Hirschhorn and Daly, 2005).

Genetic relatedness analysis based on molecular 
marker information has been well studied because of 
its importance in many areas such as ecology, human 
genetics, agriculture, and forensics (Weir et al., 2006). 
Many diff erent methods have been proposed for a variety 
of genetic relatedness estimates (Rousset, 2002; Blouin, 
2003). Relative kinship estimates (Loiselle et al., 1995; 
Ritland, 1996a) have been successfully used to account 
for the relatedness in diverse association mapping panels 
(Yu et al., 2006; Zhao et al., 2007) because they provide 
both inter- and intra-individual estimates in a symmet-
ric matrix analogous to the traditional pedigree-based 
coancestry matrix used in mixed models (Henderson, 
1984). While the robustness of population structure 
estimates from random background markers has been 
previously studied (Pritchard et al., 2000) and validated 
in many empirical studies (Evanno et al., 2005; Camus-
Kulandaivelu et al., 2007), the robustness of kinship 
estimates with varied numbers of background markers 
would provide further insight into the application of the 
unifi ed mixed-model approach in the context of associa-
tion mapping.

In the current study, we fi rst laid out the theoretical 
reasoning of using model testing to assess the adequacy 
of background markers for relationship estimation under 
maximum likelihood framework and validated with 

computer simulations. To our limited knowledge, this is 
the fi rst study where the assessment of the accuracy of 
cofactors and variance–covariance structure estimated 
from molecular markers was conducted through the 
likelihood-based model fi tting of quantitative traits. We 
then demonstrated with two data sets the usefulness of 
evaluating robustness of genetic relatedness via model 
testing and variance components analysis. For theoreti-
cal computer simulations and analyses with two empiri-
cal data sets, diff erent complex traits were examined to 
cover a range of scenarios in which genetic relatedness 
has diff erent levels of eff ect on phenotypic variation.

MATERIALS AND METHODS
Mixed Model
Th e mixed-model equation (Henderson, 1975, 1984) can 
be expressed as

y = Xβ + Zu + e [1]

where y is a vector of phenotypic observations; β is a 
vector of fi xed eff ects; u is a vector of random polygenic 
background eff ects; e is a vector of residuals; and X and 
Z are incidence matrices of 1s and 0s relating y to β and 
u, respectively. Th e variances of the random eff ects are 
assumed to be Var(u) = 2KVg, and Var(e) = RVR (Yu et 
al., 2006), where K is an n × n matrix of relative kinship 
coeffi  cients (obtained from SPAGeDi [Hardy and Veke-
mans, 2002]) that defi ne the degree of genetic covariance 
between a pair of individuals; R is an n × n matrix with 
the off -diagonal elements being zero and the diagonal 
elements being the reciprocal of the number of observa-
tions for which each phenotypic data point was obtained; 
Vg is the genetic variance; and VR is the residual variance.

For model testing, maximum likelihood rather than 
restricted maximum likelihood can be used to solve the 
mixed model and obtain the variance component esti-
mates of Vg and VR because comparisons among models 
with diff erent random or fi xed variables were conducted 
(Littell et al., 2006). However, if variance component 
estimation is the focus, restricted maximum likelihood 
should be used to remove the bias associated with the 
fi xed model in maximum likelihood approach (Lynch 
and Walsh, 1998). We have verifi ed that the choice of 
maximum likelihood or restricted maximum likelihood 
did not alter the pattern of changes in our analysis. Th e 
−2 log-likelihood function for estimating the parameter 
Vg and VR is

l(y | Vg, VR) = log|V| + r̀ V–1r + n log(2π) [2]

where r = y − X(XʹV–1X)–XʹV–1y, and V = Z(2KVg)Zʹ + 
R(VR). It can be seen that the accuracy in estimating K 
aff ects two nonconstant terms (i.e., log|V| and rʹV–1r) in 
Eq. [2] and subsequently infl uences the maximum likeli-
hood value under given K and the associated values of Vg 
and VR at convergence point.

Alternatively, we can view this in terms of deviation 
of marker-based KM from the true KT, KM = KT + ΔK, 
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where ΔK is the deviation associated with the estimation. 
Th en, based on marker-estimated relationship (KM), we 
have the variance of trait y (VM) and

VM = Z(2KMVg)Zʹ + R(VR) = 

Z[2(KT + ΔK)Vg]Zʹ + R(VR)

If all elements of ΔK approach zero, then VM will approach 
VT. And subsequently, with Eq. [2] the likelihood value 
l(KM) approaches l(KT). To our knowledge, this would be 
very diffi  cult, if not impossible, to prove mathematically, 
particularly given the mixed model itself is solved through 
a parameter (Vg and VR) searching process. However, 
extensive simulations with diff erent trait architectures 
can be conducted to demonstrate that this is the case.

With known K, the maximum likelihood of model, 
l(y | V̂g , V̂R), fi nds V̂g   and V̂R at a convergence point 
(Henderson, 1984; SAS Institute, 1999). With diff erent K 
being estimated from diff erent sets of markers, the maxi-
mum likelihood process converges at diff erent point with 
diff erent V̂g  and V̂R. In addition, if Xβ contains covari-
ates, such as fi xed population structure (Q) eff ects, the 
accuracy in estimating these covariates also infl uences 
the maximum likelihood (i.e., through the term r = y − 
X(XʹV–1X)–XʹV–1y in Eq. [2]). Relating to genetics, a more 
accurate estimate of K (defi ning variance–covariance of 
u) and Q (relating the covariates) from molecular marker 
information would result in a better fi t of the model in 
explaining phenotypic variation with genetic related-
ness than a less accurate estimate. With −2 residual log-
likelihood, Bayesian Information Criterion (BIC) value 
(Schwarz, 1978) is simply

BIC = l(y | Vg , VR) + d log(n) [3]

where d the dimension of the model. Th e BIC values 
adjusted the −2 residual log-likelihood values for the 
number of model parameters and sample size. We pre-
sented BIC results in some fi gures because the models 
without kinship term (i.e., 0% marker or no Zu in Eq. 
[2]) were also examined and no penalty is associated 
with these models. In the case of analysis without marker 
information, genetic variance cannot be separated from 
experimental variance and the diff erence in model 
dimension of this model compared with other models 
equals 1.

Computer Simulations
Due to limited knowledge about population structure in 
plant and animal species, we focused our simulation on 
the kinship relationship among a group of 240 inbred 
lines with diff erent relatedness but without subpopula-
tion structure. Th e simulation process follows a com-
mon breeding history in many plant and animal species, 
that is, individuals of earlier generations are crossed to 
form segregating populations from which progeny indi-
viduals were derived (Yu et al., 2005). To simulate the 
genetic relationship, we started with 16 founder inbred 
lines that were derived from a random-mated ancestral 
population. A total of 32 inbred lines were then derived 

from 16 random biparental crosses between founder 
inbreds, two from each cross. Likewise, another set of 64 
inbred lines was obtained at the second round and 128 
inbreds were obtained from the third round. Th ese 240 
inbred lines were regarded as the simulated association 
mapping panel to assess the eff ect of number of back-
ground markers on relatedness estimation through the 
model-fi tting procedure. Th e simulation process, there-
fore, generated diff erent levels of kinships among indi-
viduals but no major population diff erentiation that would 
require an estimation of population structure.

For the quantitative trait, we considered a total of 
g = 20 or 50 quantitative trait loci (QTLs) and m = 400 
or 800 markers. Both marker and QTL had two alleles 
at each locus and were randomly located across the 
genome. Th e genome structure followed a published 
maize (Zea mays L.) linkage map with 1749 cM with 10 
chromosomes (Senior et al., 1996). Th e eff ects of QTLs 
were set to be constant (i.e., equal eff ects, ai = 1) or fol-
lowed a geometric series (i.e., unequal eff ects) with the 
ith QTL having an additive genetic eff ect of ai, where 
a = 0.90 for g = 20 QTLs or a = 0.96 for g = 50 QTLs 
(Lande and Th ompson, 1990). Accordingly, each of the 
two alleles at ith QTL had an eff ect of either +ai or −ai. 
Th e genotypic value of each inbred line was defi ned as 
the sum of genotypic values at all QTLs. Th e observed 
phenotypic value of each inbred line was obtained by 
adding a residual error. Diff erent numbers of QTLs, dif-
ferent eff ect size distributions, diff erent heritability, and 
diff erent numbers of starting markers (i.e., assuming 400 
or 800 markers are available as the whole set of markers) 
allowed us to investigate diff erent trait complexities and 
scenarios that researchers would encounter in real situ-
ations. In our simulation, only random drift  changes the 
allele frequency of markers from the expected 0.5 level.

We investigated two simulation settings: general and 
multiple resampling (Table 1). In the fi rst simulation setting, 
we focused on the diff erence among cases and a total of 50 
independent runs were conducted for each case (i.e., combi-
nation of number of QTLs, QTL eff ect, total marker num-
ber, and heritability). Within each run, new relationships 
and kinship estimation were generated independently. At 

Table 1. Description of theoretical and empirical data–
based computer simulations.

Simulation 
scenario

Study focus
Results 

presentation

General 
resampling

Difference among cases (combination of parameters: number of 
QTL,† QTL effect, total marker number, and heritability) and a 
total of 50 independent runs were conducted for each case

Fig. 1

Multiple 
resampling

Multiple resampling of different proportions of markers from each 
individual case. A single run was randomly chosen for each case 
and 10 repetitions of resampling were randomly conducted at 
each marker proportion

Fig. 2–3

Empirical data 
(maize and 
canine)

Multiple resampling of different proportions of markers from each 
dataset and 10 repetitions of resampling were conducted at each 
marker proportion

Fig. 5–8

†QTL, quantitative trait loci.
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each run, fi ve diff erent marker proportions were studied: (i) 
no marker (0%), (ii) every eight markers (12.5%), (iii) every 
four markers (25%), (iv) every two markers (50%), and (v) all 
markers (100%). Heritability of h2 = 0.4 or 0.7 was examined 
and results are presented in Fig. 1.

In the second simulation setting, we focused on mul-
tiple resampling of diff erent proportions of markers from 
each individual case. A single run was randomly chosen 
for each case and 10 repetitions of resampling were ran-
domly conducted at each marker proportion (12.5, 25, 50, 
and 75%). Heritability of h2 = 0.4 or 0.6 was examined and 
results are presented in Fig. 2 and 3. Switching the higher 
end heritability from 0.7 to 0.6 is to cover more scenarios. 
In both simulation settings, additive relationship matrices 
derived from pedigree information also were examined for 
comparison. By conducting experiments under both simu-
lation settings, we were able to obtain the general informa-
tion across independent runs as well as the performance of 
multiple resampling of a particular run that is comparable 
to the empirical data analyses.

Maize Association Mapping Panel
A group of 274 diverse maize inbred lines was used for the 
current study based on the availability of both 912 SNP 
and 89 SSR marker data. Detailed information about this 
association mapping panel has been documented in previ-
ous publications (Liu et al., 2003; Flint-Garcia et al., 2005; 
Yu et al., 2006). Th ese maize inbred lines represented the 
diverse genetic material that is publicly available around 
the world and has been used for dissection of various com-
plex traits as well as general method development (Th orns-
berry et al., 2001; Wilson et al., 2004; Yu et al., 2006). 
Th ree traits were chosen to cover a range of agronomic 
and physiologic traits with diff erent heritability estimates 
and population structure eff ects: fl owering time, ear 
height, and ear diameter (Flint-Garcia et al., 2005). Flow-
ering time was measured as the number of days to pollen 
shed; ear height as the distance from the ground to the 
major ear-bearing node; and ear diameter as the diameter 
of an ear at the midsection. Field tests were conducted at 
Clayton, NC (summer nursery), and Homestead, FL (win-
ter nursery), in 2002, and the trait mean of the two fi eld 
tests was used in the current study. We used trait means 
rather than observations from individual environments 
to reduce the environmental error associated with single-
environment observation.

For the maize data, three subsets (25, 50, and 75%) 
of the original SSR and SNP data were randomly selected 
without replacement to estimate population structure 
and kinship in the whole set of maize inbred lines (Table 
1). Th is equaled to 228, 456, and 684 SNPs, and 22, 45, 
and 67 SSRs. For each sampling subset, 10 repetitions 
were conducted for each population structure and kin-
ship matrix because the population structure estimation 
through STRUCTURE and mixed-model analyses are 
both computationally demanding. Th e average model-
fi tting statistics across these repetitions and correspond-
ing standard deviations were reported.

Canine Association Mapping Panel
A group of 266 crossbred dogs derived from trait-free 
Greyhounds and dysplastic Labrador Retrievers was 
geno typed with 471 SSRs randomly distributed across 
the genome (Mateescu et al., 2005; Todhunter et al., 
2005). Detailed pedigree structure, molecular marker 
procedures, and QTL mapping results have been previ-
ously reported (Mateescu et al., 2005; Todhunter et al., 
2005). Briefl y, canine hip dysplasia is a complex devel-
opmental trait characterized by hip laxity, subluxation, 
or incongruity of the femoral head and acetabulum 
in aff ected hips. Distraction index (DI) was measured 
as maximum lateral passive hip laxity on both left  
(DI_left ) and right (DI_right) hips, whereas dorsolat-
eral subluxation (DLS) was measured on the dorsoven-
tral radiograph with the hips oriented and loaded in a 
weight-bearing position on both left  (DLS_left ) and right 
(DLS_right) hips (Todhunter et al., 2005).

For the canine data, fi ve subsets (6.25, 12.5, 25, 50, 
and 75%) of the original SSR data were randomly selected 
without replacement to estimate kinship among the whole 
set of dog individuals (Table 1). Th is equaled to 29, 59, 118, 
236, and 353 SSRs used for kinship estimation. Th e addi-
tional smaller subsets (i.e., 6.25 and 12.5%) were examined 
because of the relatively larger number of the original SSR 
markers in the canine data (471 SSRs) as compared with 
maize data (89 SSRs). For each sampling subset, 10 repeti-
tions were conducted for each kinship matrix and average 
model-fi tting statistics across these repetitions and corre-
sponding standard deviations were reported.

Estimation of Genetic Relatedness
Relative kinship (K) was calculated using the soft ware 
SPAGeDi (Hardy and Vekemans, 2002). Since kinship 
estimates based on Loiselle et al. (1995) and Ritland 
(1996a) give comparable results, we chose the estima-
tion method of Loiselle et al. (1995) to be consistent with 
our previous study (Yu et al., 2006). Although these two 
methods have slightly diff erent calculations, the con-
ceptual formula is Kij = (Qij – Qm)/(1 – Qm), where Qij is 
the probability of identity in state for random loci from 
individuals i and j, and Qm is the average probability of 
identity in state for loci from random individuals from 
the sample (Hardy and Vekemans, 2002). Th e kinship 
estimate at single loci was averaged across loci to give 
kinship estimates between two individuals (Loiselle et 
al., 1995; Ritland, 1996a). Negative values were set to 
zero, as this indicates the relationship of those individu-
als is less than that of random individuals (Hardy and 
Vekemans, 2002). Including negative values indicates 
“negative” covariance among individuals in a genetic 
variance–covariance matrix. Th is deviates from the 
genetic assumption of the traditional mixed model that 
the variance–covariance among individuals is greater 
than or equal to zero. We would, therefore, like to only 
present results with kinships in which the minimum 
value was set to zero and leave the debate of whether set-
ting negative values to zero or not to future studies.
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Figure 1. Model fi tting of simulated populations with different parameters, independent runs. The −2 residual log-likelihood values of 
mixed models with different relative kinship (K) matrices and variance ratio [Vg/(Vg + VR)] estimates. Dashed lines represent the simu-
lated heritability (h2). QTL, quantitative trait loci.
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Population structure (Q) esti-
mates were calculated using the 
soft ware STRUCTURE (Pritchard 
et al., 2000; Falush et al., 2003) for 
maize data as in our previous studies 
(Flint-Garcia et al., 2005; Yu et al., 
2006). We conducted experiments in 
which the same sets of markers (25, 
50, and 75% of original SNPs and 
SSRs) were used to construct both 
population structure by STRUC-
TURE and relative kinship by 
SPAGeDi. We chose the number of 
subgroup to be three for running the 
structure analysis because this has 
been determined by previous exten-
sive analyses with the whole set of 
markers and agreed with the breed-
ers’ knowledge about these materials 
(Liu et al., 2003; Flint-Garcia et al., 
2005) and also because the main 
focus of the study was kinship esti-
mation. Th ree maize subgroups are 
stiff  stalk, non–stiff  stalk, and tropi-
cal–subtropical. For canine data, no 
population structure was estimated 
given the closed breeding structure.

Th ree general comparison 
schemes were examined for maize 
data. In the fi rst scheme, the same 
subsets of markers were used to 
estimate both Q and K. Th is rep-
resented a common scenario when 
only a single set of markers was 
available. In the second scheme, 
we kept the Q constant but var-
ied the number of markers for K 
estimation. By having a constant 
population structure based on the 
full set of markers, the robustness 
of kinship estimates with diff erent 
numbers of markers can be shown 
directly. In the third scheme, we 
kept the K constant but varied 
the number of markers for Q esti-
mation. Likewise, this provided 
evidence on the sensitivity of popu-
lation structure estimation with 
diff erent numbers of markers. We 
presented results with the constant 
Q estimated with 89 SSRs for the 
second scheme, and the constant 
K estimated with 912 SNPs for the 
third scheme because the results 
with the constant Q with 912 SNPs 
and the constant K with 89 SSRs 
were identical.

Figure 2. Model fi tting of simulated individual populations with different relative kinship (K) 
with quantitative trait loci (QTL) = 20 and m = 400, multiple resampling at intermediate 
proportions. (a–d) Bayesian Information Criterion (BIC) and −2 residual log-likelihood val-
ues of mixed models with different K matrices. (e–h) Variance ratio [Vg/(Vg + VR)] estimates 
from mixed models. Standard deviations are shown by vertical bars. h2, heritability.
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Model Testing Procedure
Th e mixed-model equations for 
model testing with the simulated 
data and canine data are the same as 
Eq. [1] because there was no popula-
tion structure simulated or expected. 
For maize data, the mixed-model 
(Henderson, 1975, 1984) equation for 
model testing is expressed as

y = Xβ + Qv + Zu + e          [4]

where v is a vector of population 
group eff ects; and Q is a matrix from 
STRUCTURE relating y to v. Th is is 
an expanded form of Eq. [1] by sepa-
rating the part of fi xed population 
structure from the rest of the fi xed 
eff ects for the convenience of expla-
nation. But the statistical properties 
remain unchanged.

Th e mixed-model analysis was 
conducted with Proc Mixed in 
SAS (SAS Institute, 1999). In our 
analyses, BIC values allowed a cross 
comparison of models either without 
(0% marker) or with Q or K (diff er-
ent proportion of markers). But for 
models with the same parameters 
(i.e., cases other than 0% marker), 
the penalty terms due to the inclu-
sion of the Q or K were the same. 
Some other model selection criteria 
and their modifi cations have been 
recently reviewed (Sillanpaa and 
Corander, 2002). In our analysis, 
additional Akaike Information Cri-
terion (AIC) and corrected Akaike 
Information Criterion (AICc) were 
also given by Proc Mixed in SAS and 
the only diff erence with BIC was the 
scale change in comparing the case 
with 0% with the rest of the cases.

We chose a consistent scale 
to present the changes in BIC and 
likelihood values for three diff erent 
comparison schemes in maize data 
(i.e., both Q and K with diff erent 
number of markers, Q constant but 
K varying, and K constant but Q 
varying) to avoid the biases due to 
the diff erences in scale in evaluating 
the signifi cance of these changes. 
Th e ranges of changes in BIC and 
likelihood values were also set the 
same across diff erent traits for each 
data set for an unbiased comparison.

For maize data, because the 
gross population structure was 

Figure 3. Model fi tting of simulated individual populations with different relative kinship (K) 
with quantitative trait loci (QTL) = 50 and m = 800, multiple resampling at intermediate 
proportions. (a–d) Bayesian Information Criterion (BIC) and −2 residual log-likelihood val-
ues of mixed models with different K matrices. (e–h) Variance ratio [Vg/(Vg + VR)] estimates 
from mixed models. Standard deviations are shown by vertical bars. h2, heritability.
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accounted for by the Qv term in the mixed model, the 
variance ratio Vg/(Vg + VR) can be interpreted as herita-
bility averaged across three maize subgroups (stiff  stalk, 
non–stiff  stalk, and tropical–subtropical from STRUC-
TURE). We chose variance ratio rather than marker-
based heritability because the latter only approaches true 
heritability (as shown in simulations) and the number of 
background markers was varied. Variance ratio indicates 
how much phenotypic variance can be attributed to the 
genetic variance aft er accounting for relatedness among 
individuals for diff erent complex traits.

RESULTS
Computer Simulations
Suppose we have true values of Q and K, under the maxi-
mum likelihood framework, the −2 log-likelihood of 
the data on convergence value Vg and VR is l(y | Vg, VR). 
With Qp and Kp being estimates of Q and K based on 
p random markers, the maximum likelihood becomes 
lp(y | Vg

p, VR
p). In theory, the inaccuracy in estimating 

Q and K decreases the maximum likelihood, which 
can be expressed as l p > l in −2 log format. When more 
background markers are used, the accuracy of Qp and Kp 
increases and lp approaches l. However, if the adequate 
number of markers is reached, we would see a stabilized 
lp. Th e change in BIC follows the same trend, except it 
imposes a penalty on the model dimension. Meanwhile, 
the estimates of Vg

p and VR
p with adequate number of 

markers approach Vg and VR of known Q and K. In terms 
of variance ratio, Vg

p/(Vg
p + VR

p) approaches Vg/(Vg + VR) 
with an adequate number of markers. Th en, if subsets of 
q or r (q > r) markers were sampled from the whole set 
of p markers and used to obtain a series of (Qq, Kq) and 
(Qr, Kr), the average value of −2 log-likelihood ĺ q should 
be smaller than ĺ r. Th e use of average over a number of 
repetitions is to off set the variance in Q and K estima-
tion process as well as random sampling error, which 
may lead to lq > l r in some cases. Similarly, the average 
BIC values and the variance ratios for models in which 
Q and K are estimated with more markers should be 
more accurate than those for models in which Q and K 
are estimated with fewer markers, and these diff erences 
diminish with an adequate number of markers in Q and 
K estimation.

Computer simulation results revealed a consistent 
pattern in changes in likelihood values and variance 
ratio estimates across diff erent trait complexities for the 
general simulation setting with independent runs (Fig. 
1) and the multiple resampling simulation setting with 
individual populations (Fig. 2 and 3). For the general 
simulation setting, resampling was conducted once at 
each marker proportion and results were averaged across 
independent runs to obtain the overall pattern. With 
more markers used in the kinship estimation, both the 
likelihood value and the variance ratio estimate generally 
approached a plateau. Pedigree-based additive relation-
ship matrix gave better estimates of variance ratio than 

any marker-based relationship matrix even though the 
likelihood value of the model with pedigree information 
was not always the smallest. As expected, the changes in 
likelihood value and variance ratio estimate were greater 
in scale when heritability is higher (i.e., h2 = 0.6/0.7 vs. 
0.4), but no obvious diff erences were observed for dif-
ferent QTL eff ect distributions (i.e., equal or unequal 
eff ects) (Fig. 1–3). In theory, a diff erent weight is given 
in solving mixed model when incorporating the genetic 
relationship matrix [i.e., (2K)–1(VR/Vg)] under high heri-
tability than under low heritability.

For given individual populations, multiple resam-
pling at diff erent marker proportion closely resembles the 
empirical samples and allowed us to examine the fl uctua-
tion due to sampling error. Th e variation due to diff erent 
subsets of random markers at each marker density gener-
ally became smaller as marker number increases (Fig. 
2 and 3). Similar to what we observed from the general 
simulation setting, pedigree-based additive relation-
ship matrix gave better estimates of variance ratio than 
marker-based relationship matrix. For the simulated 
association panel with 240 inbred lines, about 300 to 600 
biallelic markers, depending on diff erent cases, would 
give robust kinship estimates to relate to the phenotypic 
variation of the quantitative trait with 20 or 50 QTLs.

Maize Data
Across 274 maize inbred lines, the mean of major allele 
frequency was 0.78 for SNP data and 0.33 for SSR data. 
Th e average polymorphism information content (PIC; 
a measurement of informativeness of markers) value 
(Anderson et al., 1993) for SNPs was 0.24, ranging from 
0.004 to 0.375, whereas the average PIC value for SSRs 
was 0.78, ranging from 0.361 to 0.964 (Fig. 4). Compared 
with biallelic SNPs, the SSRs had an average allele num-
ber of 21.5. Across 266 dogs, the mean major allele fre-
quency was 0.47 for 471 SSRs. Th e average PIC value was 
0.60, ranging from 0.046 to 0.919, and the average allele 
number was 7.7 (Fig. 4).

Th e impact of relatedness estimation with molecular 
markers on model fi tting was diff erent across three quan-
titative traits (Fig. 5). With both BIC and likelihood val-
ues being plotted on the same scale across three diff erent 
quantitative traits, the relative importance of relatedness 
on model fi tting can be shown clearly. Th e improvement 
in model fi tting was greater for fl owering time than for 
ear height or ear diameter, as more background markers 
were used in relatedness estimation (Q and K). Com-
pared with the model without Q and K, models that 
account for relatedness had a better fi t even when a small 
number of background markers were used in estimating 
kinship. For models with Q and K, the likelihood values 
showed a parallel pattern as the BIC values because the 
same penalty terms were applied in calculating BIC from 
−2 residual log-likelihood. Regardless of the number of 
markers used, there were two degrees of freedom for Q 
and one degree of freedom for K, compared with mod-
els without Q and K (0% marker). Overall, as indicated 
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by the changes in BIC and likelihood values for model 
fi tting and in variance ratio estimates, relatedness esti-
mates did not become stable even with 75% (i.e., 684 
SNPs or 67 SSRs) of the whole set of markers in the 
maize association mapping panel (Fig. 5), indicating that 

an obvious plateau would require more markers than the 
current full sets of SSRs and SNPs. Th is general pattern 
in model fi tting and variance ratio was consistent for 
all trait–marker combinations. Moreover, as indicated 
by the large standard deviation bars around the average 

Figure 4. Frequency distribution of polymorphism information content (PIC) for two types of molecular markers. (a) PIC values of 912 
single nucleotide polymorphisms (SNPs) and 89 simple sequence repeats (SSRs) scored on 274 diverse maize inbred lines; (b) PIC val-
ues of 471 SSRs scored on 266 crossbred dogs.

Figure 5. Model fi tting for maize quantitative traits with both population structure (Q) and relative kinship (K) being estimated with dif-
ferent numbers of markers. (a–c) Bayesian Information Criterion (BIC) and −2 residual log-likelihood values of mixed models with dif-
ferent Q and K estimates based on different proportion of the whole set of background markers (912 single nucleotide polymorphisms 
[SNPs] or 89 simple sequence repeats [SSRs]). (d–f ) Variance ratio [Vg/(Vg + VR)] estimates from mixed models. Standard deviations are 
shown by vertical bars.
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variance ratios, the variation among diff erent repetitions 
in each marker subset remained generally high (Fig. 5). 
Th e whole set of 89 SSR markers provided roughly the 
same amount of information as did the whole set of 912 
SNP markers for relatedness construction (Fig. 5).

With a constant population structure based on the 
full set of 89 SSRs across models, the eff ect of marker 
number on relative kinship can be shown directly (Fig. 
6). In this case, the model with 0% marker number cor-
responded to the model with only population structure. 
When more markers were used for kinship estima-
tion, the model fi tting and variance ratio estimation 
improved for all three traits, though at diff erent rates. 
Except the diff erence at 0% marker number (due to the 
constant Q in Fig. 6), the general patterns of model fi t-
ting and variance ratio estimation with constant Q but 
varying K were similar to that with varying Q and K (as 
shown in Fig. 5). With a constant kinship based on the 
full set of 912 SNPs, however, the number of markers 
on population structure had small to negligible eff ect 
on model fi tting and variance ratio estimation (Fig. 7). 
With the penalty term associated with including popu-
lation structure, the average BIC value for ear diameter 
was even higher for models with population structure 
than for models without it (i.e., 0% marker number). 
Th e variance ratio estimates were essentially fl at with 
diff erent Q based on diff erent numbers of background 
markers. Th e results with the constant Q with 912 SNPs 
and the constant K with 89 SSRs were very similar to 
the corresponding results presented. Considering the 
three scenarios together, our results indicated that the 
improvement of model fi tting and variance component 
estimation with more background markers was mainly 
through a more robust estimation of relative kinship 
(Fig. 5–7).

Canine Data
Similar to the results from maize data, increasing marker 
number in kinship estimation decreased the BIC values 
and increased the variance ratios for all four dysplastic 
traits (Fig. 8). Models with kinship estimates, which 
account for the genetic relatedness, had better fi t than 
the model without kinship in the canine sample. Aver-
age BIC values and variance ratios started reaching a 
plateau with 118 SSRs (i.e., 25% of the whole set). Further 
increasing the background markers resulted in minimal 
improvement in BIC and much smaller increase in vari-
ance ratios. Th e stabilized variance ratios were close 
between pairs of traits: 0.21 to 0.26 for DI and 0.15 to 
0.21 for DLS. Notably, the variation among diff erent rep-
etitions in each marker subset decreased as the number 
of markers increased, and this reduction in variation was 
more prominent in BIC than in variance ratios (Fig. 8). 
Th ere were diff erences in BIC values between pairs of 
traits (DI_left  vs. DI_right, and DLS_left  vs. DLS_right), 
and Pearson correlation coeffi  cients were signifi cant for 
phenotypic measurements from left  and right hips (0.76 
for DI and 0.79 for DLS).

DISCUSSION
Molecular markers have long been used to examine the 
genetic relationships among individuals with unknown 
mating records in natural populations and to estimate 
the genetic distances among diff erent breeding materials 
(Weir et al., 2006). Ritland (1996b) was among the fi rst 
scientists who coupled marker-based genetic relatedness 
with phenotypic similarity to generate estimates of vari-
ance components (Lynch and Walsh, 1998). Recent studies 
have successfully incorporated various marker-based relat-
edness estimates (e.g., population structure, relative kin-
ship, and principal components) into association analysis 
with the common goal of alleviating the impact of cryptic 
relatedness in identifying the causative polymorphisms 
underlying complex traits (Pritchard et al., 2000; Th orn-
sberry et al., 2001; Falush et al., 2003; Price et al., 2006; 
Yu et al., 2006). In the current study, we focused on the 
eff ect of number of background markers on relationship 
estimation with computer simulations and analyses of two 
empirical association mapping populations.

In the traditional application of linear models, the 
covariate and the variance–covariance structure are 
usually known from direct measurement or imposed 
with certain fi xed structure. For instance, the variance–
covariance of random polygene eff ect (or breeding value) 
is defi ned by the additive relationship matrix based on 
known pedigree information (Lynch and Walsh, 1998). 
However, in the context of association mapping, both 
population structure and relative kinship need to be 
estimated from molecular marker information due to 
the diverse origins and complex relationships. Under the 
maximum likelihood framework, the inaccuracy of the 
covariates and/or variance–covariance introduced in 
the process of their estimation with diff erent numbers 
of molecular markers leads to a decrease in model fi t to 
the data. Fortunately, it has been a common practice for 
many researchers that phenotypes of general complex 
traits are oft en collected and a set of background mark-
ers is assayed to estimate the genetic relationship before 
a more thorough genomewide association analysis or 
candidate-gene analysis. Th is makes the assessment 
approach outlined in our study feasible.

So far, only a few plant association mapping panels 
with adequate sample size have been thoroughly stud-
ied and our knowledge on the general characteristics of 
these diverse populations is still very limited, prevent-
ing us from conducting a thorough examination. For 
example, a second maize panel has only genomewide SSR 
data (Camus-Kulandaivelu et al., 2006); the Arabidopsis 
panel contains only 95 diverse lines (Zhao et al., 2007); 
and the grain sorghum [Sorghum bicolor (L.) Moench] 
diversity panel has only been genotyped with 49 SSR 
markers (Casa et al., 2008). Accordingly, we have focused 
our computer simulations on relative kinship rather than 
on both population structure and relative kinship. At 
the same time, we chose to conduct a series of marker 
sampling using two available data sets as the base data: 
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one from a diverse set of maize inbred lines with com-
plex population structure and familial relatedness (Liu 
et al., 2003; Flint-Garcia et al., 2005; Yu et al., 2006), and 
the other from a group of crossbred dogs (Mateescu et 
al., 2005; Todhunter et al., 2005). To our knowledge, the 
multiple-donor populations derived with both backcross 
and intercross, as represented by the canine data, are also 
popular in many plant breeding programs, particularly 
for disease resistance selection and introgression. We 
expect a similar genetic data structure in these plant 
breeding populations as that of the canine data.

With computer simulations of a simulated association 
mapping panel with only kinship relationships, we demon-
strated that the likelihood value and the variance ratio esti-
mate approached their stabilized values as the number of 
background markers increased. Th is was consistent under 
diff erent trait complexities and initial marker number. 
Interestingly, we also consistently obtained a better vari-
ance component estimate with pedigree information than 
marker information across diff erent simulation scenarios. 
Since markers allow an a posteriori estimation of identity 
relative to that expected from pedigree, one could expect 
a better adjustment of marker-based models. Th is result 
points to the probably inevitable limitation of marker-
based relationship estimation process. While molecular 
marker information provides a viable route for relationship 

quantifi cation when pedigree information is not available 
or incomplete, there seems to be a limit on how close this 
marker-based relationship can reach. In our simulations, 
simulated heritabilities were consistently underestimated 
by the variance ratio with marker-based relative kinships. 
Additional research with other relationship estimates 
(Weir et al., 2006), particularly relating relationship with 
phenotypic trait variation as demonstrated in our study, 
is desirable to see whether this underestimation applies to 
other measures of relatedness. But we speculate that the 
general pattern in changes in likelihood value and variance 
ratio estimate with respect to number of markers used in 
relationship construction remains the same.

Our results with maize data further showed that 
relative kinship is more sensitive to the number of mark-
ers than population structure in terms of model fi t-
ting and variance component estimation. Th is may be 
explained by the diff erent goals between these two relat-
edness quantifi cation approaches as well as the way the 
two diff erent estimates were used in the mixed model. 
For population structure estimation, group membership 
and admixture proportion are the main focus, but for 
relative kinship estimation, pairwise relatedness both 
inter- and intragroup among all individuals is the focus. 
In the mixed model, population structure estimates are 
used to estimate diff erent slopes (as fi xed variables) for 

Figure 6. Model fi tting for maize quantitative traits with population structure (Q) being constant but relative kinship (K) being estimated 
with different numbers of markers. (a–c) Bayesian Information Criterion (BIC) and −2 residual log-likelihood values of mixed models 
with different K based on different proportion of the whole set of background markers (912 single nucleotide polymorphisms [SNPs] or 
89 simple sequence repeats [SSRs]). The constant Q was estimated with the whole set of 89 SSR markers. (d–f ) Variance ratio [Vg/(Vg + 
VR)] estimates from mixed models. Standard deviations are shown by vertical bars.
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subgroups, while relative kinship estimates are used to 
estimate the genetic variance (as a random variable). 
Nevertheless, the relative importance of population 
structure and relative kinship depends on the actual 
genetic structure of the real population in question. It 
is likely that population structure can be more sensitive 
than relative kinship in some other cases.

In general, both the simulated and empirical data 
revealed that a robust relatedness estimate, particu-
larly kinship estimate, requires an adequate number of 
background markers. Stabilized model-fi tting statis-
tics and variance component estimates can be used to 
assess how well the marker-based genetic relationships 
explain the phenotypic variation among individuals for 
multiple complex traits. For relative kinships, the pat-
tern of changes in the likelihood values and variance 
ratio estimates was consistent across diff erent data and 
analysis schemes: the simulated data with only kinship 
relationships, the maize data with a constant popula-
tion structure, and the canine data. In practice, kinship 
construction with subsets of the whole marker panel and 
subsequent model testing could provide information 
on whether there is a suffi  cient number of background 
markers to quantify genetic relationships among indi-
viduals. Previous studies have developed a variety of esti-
mators to quantify relatedness (Queller and Goodnight, 

1989; Loiselle et al., 1995; Ritland, 1996b; Lynch and Rit-
land, 1999; Wang, 2002; Milligan, 2003). Th ese estima-
tors diff er in their accuracy and precision (Blouin, 2003; 
Milligan, 2003). A comparison of diff erent estimators 
with empirical data from multiple complex traits would 
be interesting but is beyond the scope of this study. We 
chose the kinship measure (Loiselle et al., 1995) because 
of its simultaneous estimation of inter- and intra-
individual relationships with a symmetric matrix and it 
is free of assumption of Hardy–Weinberg equilibrium. 
While previous studies mainly used simulations to test 
the accuracy of marker-based relative kinship estimates 
to simulated true kinships, the current study is the fi rst 
one, to our knowledge, in which multiple phenotypes 
were used to test the robustness of kinships based on dif-
ferent number of markers in the context of association 
mapping. For association mapping panels with diverse 
germplasm, our approach provided a more relevant 
test because it is impossible to obtain the true kinships 
among all individuals. Th e use of the ratio of the diff er-
ences in the probabilities of identity in state was recently 
proposed to give a generic defi nition for inbreeding coef-
fi cient and relatedness (Rousset, 2002). It shift ed from 
identity by descent for which a reference population is 
required, but extremely diffi  cult to defi ne in reality, to 
identity in state. Relatedness is, by defi nition, a relative 

Figure 7. Model fi tting for maize quantitative traits with relative kinship (K) being constant but population structure (Q) being estimated 
with different numbers of markers. (a–c) Bayesian Information Criterion (BIC) and −2 residual log-likelihood values of mixed models 
with different Q based on different proportion of the whole set of background markers (912 single nucleotide polymorphisms [SNPs] or 
89 simple sequence repeats [SSRs]). The constant K was estimated with the whole set of 912 SNP markers. (d–f) Variance ratio [Vg/(Vg 
+ VR)] estimates from mixed models. Standard deviations are shown by vertical bars.
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quantity in terms of time and popu-
lation. For association analysis with 
diverse germplasm, this type of rela-
tive quantifi cation serves well the 
purpose to account for the part of 
phenotypic variation that is stemmed 
from the hidden genetic factors in 
the given population.

A direct comparison of SSRs 
and SNPs in quantifying kinship in 
maize was not made because such a 
comparison is confounded by many 
factors that diff er between the two 
types of markers, such as initial 
discovery and detection process, fre-
quency distributions, and evolution-
ary history (Tenaillon et al., 2002). 
Instead, we focused on providing a 
parallel examination with available 
empirical data. As expected, with 
higher PIC, a much smaller number 
of SSRs provided equivalent related-
ness estimates with respect to the 
fi t of the phenotype model as do a 
large number of SNPs. Although the 
cost of generating SNP data through 
high-throughput genotyping tech-
niques is much lower than that for 
the traditional SSRs, our results dem-
onstrated that estimating relatedness 
using SSRs is feasible to initiate asso-
ciation mapping studies. As more 
random markers are used in popula-
tion structure and kinship estimation, the dependency 
(i.e., correlated allele frequencies) among markers would 
increase. Th is has been considered in the latest method of 
inferring population structure by STRUCTURE (Falush 
et al., 2003). However, given the linkage disequilibrium 
decays within a short distance for most diverse germ-
plasm examined so far (Flint-Garcia et al., 2003), this 
should not be a serious concern unless the marker num-
ber becomes much higher than the level we examined 
here. A detailed examination on marker dependency is 
desirable but beyond the scope of the current study.

In our simulation and analysis, the traditional 
assumption of the mixed model was kept throughout, 
that is, only the additive genetic eff ect was investigated. 
Th e importance of nonadditive eff ects (Lee and Van der 
Werf, 2006; Wardyn et al., 2007) may also aff ect the eval-
uation but is more relevant to the canine data (i.e., both 
simulated data and maize data were based on inbred 
lines with only additive-by-additive type of epistasis as 
the source of nonadditive eff ect). Moreover, the assump-
tion of the background markers being selectively neutral 
may aff ect the relationship estimation and subsequent 
model testing. Th e approach we proposed in the current 
study, however, should generally apply since any inac-
curacy in relationship estimation is expected to show in 

the process of linking these relationships to phenotypic 
variation observed. Although we only investigated bial-
lelic markers in the computer simulations, the extension 
to multiallelic markers is straightforward as was demon-
strated with SSR markers in maize and canine data.

While we observed a reduced variation in model-
fi tting statistics and variance ratios with an increased 
number of markers in the canine data, this trend was 
less obvious in maize. Presumably, besides the much 
higher genetic diversity in maize than in domestic dogs 
at the species level, the assembly of these worldwide 
maize inbred lines (Liu et al., 2003; Flint-Garcia et al., 
2005) was much wider than that of the dogs, which had 
a limited number of founders from two diff erent breeds 
(Todhunter et al., 2005). Indeed, the large number of 
SSRs scored for the canine panel was aimed at obtain-
ing an initial genomewide scan rather than to provide 
background markers for quantifying genetic relation-
ships (Todhunter et al., 2005). Among many other 
reasons, the scale and pattern diff erences in variance 
ratio estimates between maize and canine traits also 
may be due to diff erences in genetic architecture. While 
many empirical studies have suggested the quantita-
tive nature of the aforementioned maize traits (Hallauer 
and Miranda Filho, 1988) and agreed with our results 

Figure 8. Model fi tting for canine dysplastic traits. (a, b) Bayesian Information Criterion 
(BIC) and −2 residual log-likelihood values of mixed models with different relative kinship 
(K) matrices based on different proportion of 471 simple sequence repeats (SSRs). (c, d) 
Variance ratio [Vg/(Vg + VR)] estimates from mixed models. Standard deviations are shown 
by vertical bars. DI, distraction index; DLS, dorsolateral subluxation.
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of high variance ratios, studies for canine hip dysplasia 
suggested the possibility of fewer major loci (Todhunter 
et al., 2003a, 2003b, 2005), corroborating the low vari-
ance ratios found in this study. Variation in BIC values 
and variance ratios was not unexpected for two reasons. 
First, the kinship estimation procedure itself has certain 
bias and variances as shown in previous studies (Blouin, 
2003; Milligan, 2003). Second, the variances of variance 
components by default are large and particularly so for 
small sample sizes (Lynch and Walsh, 1998). Because of 
this, we would recommend that multiple (e.g., 10 in our 
simulations) resampling repetitions at diff erent subsets of 
markers are conducted in using the proposed method to 
avoid the detection of artifacts rather than a true plateau. 
Furthermore, caution must be taken in interpreting the 
results because our proposed approach starts with a full 
set of markers that presumably result in a close estimate 
of kinship to the true kinship.

In conclusion, we have shown that since both popu-
lation structure and relative kinship are fi rst estimated 
from markers and then fi tted in the mixed model as 
covariates and variance–covariance matrix, the inac-
curacy introduced in this estimation process decreases 
the maximum likelihood of the model explaining phe-
notypic variation. We have demonstrated with computer 
simulations and empirical data that a robust estimation 
of kinship for use in association mapping with diverse 
germplasm requires a certain amount of background 
markers (e.g., 300–600 biallelic markers for simulated 
pedigree materials, >1000 SNPs or 100 SSRs for the 
diverse maize panel, and about 100 SSRs for the canine 
panel). Th e robustness of relationship estimate can be 
tested by fi tting multiple phenotypic traits with diff er-
ent estimates based on subsets of random markers. Th e 
number of markers required is much higher for biallelic 
SNPs than for multiallelic SSRs. Furthermore, the num-
ber of markers required for robust relationship estima-
tion is not a statistical question by itself and needs to be 
addressed from both genetic and statistical perspectives. 
Future research should address the eff ect of relationship 
estimate on detection power and false discovery rate for 
diff erent sizes of QTLs. As we gain a better understand-
ing from many ongoing plant and animal association 
studies, a thorough theoretical examination with both 
population structure and relative kinship should pro-
vide more insights into the experimental design, genetic 
structure, and data analysis in association mapping. For-
tunately, this process is being expedited with the contin-
ually decreasing cost of genotyping with rapidly evolving 
genomic technologies.
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