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Genome-Wide Association and Genomic Prediction 
Models of Tocochromanols in Fresh Sweet Corn Kernels
Matheus Baseggio, Matthew Murray, Maria Magallanes-Lundback, Nicholas Kaczmar, 
James Chamness, Edward S. Buckler, Margaret E. Smith, Dean DellaPenna,  
William F. Tracy, and Michael A. Gore*

Abstract  Sweet corn (Zea mays L.), a highly consumed 
fresh vegetable in the United States, varies for tocochromanol 
(tocopherol and tocotrienol) levels but makes only a limited 
contribution to daily intake of vitamin E and antioxidants. We 
performed a genome-wide association study of six tocochromanol 
compounds and 14 derivative traits across a sweet corn inbred 
line association panel to identify genes associated with natural 
variation for tocochromanols and vitamin E in fresh kernels. 
Concordant with prior studies in mature maize kernels, an 
association was detected between γ-tocopherol methyltransferase 
(vte4) and α-tocopherol content, along with tocopherol cyclase 
(vte1) and homogentisate geranylgeranyltransferase (hggt1) for 
tocotrienol variation. Additionally, two kernel starch synthesis 
genes, shrunken2 (sh2) and sugary1 (su1), were associated with 
tocotrienols, with the strongest evidence for sh2, in combination 
with fixed, strong vte1 and hggt1 alleles, accounting for the 
greater amount of tocotrienols in su1sh2 and sh2 lines. In 
prediction models with genome-wide markers, predictive abilities 
were higher for tocotrienols than tocopherols, and these models 
were superior to those that used marker sets targeting a priori 
genes involved in the biosynthesis and/or genetic control of 
tocochromanols. Through this quantitative genetic analysis, we 
have established a key step for increasing tocochromanols in fresh 
kernels of sweet corn for human health and nutrition.

Tocochromanols, which include four tocopherols 
and four tocotrienols, are lipid-soluble compounds 

synthesized by photosynthetic organisms that function as 
powerful scavengers of lipid peroxy radicals and singlet 
oxygen quenchers (Kruk et al., 2005). In plants, tocochro-
manols are important for limiting the oxidation of stor-
age lipids in the seed (Sattler et al., 2004) and providing 
protection against environmental stress (Liu et al., 2008). 
The saturated tail of tocopherols is derived from phytyl 
diphosphate, whereas the unsaturated tail of tocotrienols 
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core ideas

•	 Extensive natural variation exists for tocochromanols 
in fresh sweet corn kernels.

•	 vte4 controls the levels of α-tocopherol, which has the 
highest vitamin E activity.

•	 vte1 and hggt1 contribute to the genetic control of 
tocotrienols.

•	 Sweet corn lines possessing sh2 have the highest levels 
of δ- and γ-tocotrienols.

•	 Prediction abilities were highest for tocotrienols 
relative to tocopherols.

Abbreviations:  αT, α-tocopherol; αT3, α-tocotrienol; γT, γ-tocopherol; 
γT3, γ-tocotrienol; δT, δ-tocopherol; δT3, δ-tocotrienol; aeduwx, amylose-
extender:dull:waxy; BLUP, best linear unbiased predictor; bt2, brittle2; 
DAP, days after planting; FDR, false discovery rate; GBS, genotyping-by-
sequencing; GBLUP, genomic best linear unbiased prediction; GWAS, 
genome-wide association study; 2

l̂h , heritability on a line-mean basis; 
hggt1, homogentisate geranylgeranyltransferase; HPLC, high-performance 
liquid chromatography; JL, joint-linkage; LD, linkage disequilibrium; MEP, 
methylerythritol phosphate; MLMM, multi-locus mixed-model; NAM, nested 
association mapping; QTL, quantitative trait locus; RDA, recommended 
daily allowance; sh2, shrunken2; SNP, single-nucleotide polymorphism; se1, 
sugary enhancer1; su1, sugary1; total T, total tocopherols; total T3, total 
tocotrienols; total T3 + T, total tocochromanols; vte1, tocopherol cyclase; 
vte4, γ-tocopherol methyltransferase; WGP, whole-genome prediction.
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derives from geranylgeranyl diphosphate (Fig. 1). Within 
each of the two classes of tocochromanols, the four dif-
ferent chemical species (α, β, δ, and γ) are distinguished 
by the number and position of methyl groups on the aro-
matic ring [reviewed in DellaPenna and Mène-Saffrané 
(2011)]. In general, tocopherol species have greater vitamin 
E activity than their corresponding tocotrienol species, 
although tocotrienols tend to have greater antioxidant 
capacity (Sen et al., 2006). For both classes of compounds, 
vitamin E activity follows the order α > β > > γ > δ, with 

α-tocopherol having the highest vitamin E activity on a 
molar basis (Leth and Sondergaard, 1977).

Like all vitamins in the human diet, vitamin E is 
required at recommended daily amounts to maintain opti-
mal health (reviewed in Mene-Saffrane, 2017). Although 
clinical vitamin E deficiency is rare, affecting less than 
1% of the US population (Centers for Disease Control, 
2006), the prevalence of suboptimal dietary intake among 
individuals in the United States as measured by plasma 
α-tocopherol levels is surprisingly high, ranging from 43 

Fig. 1. Tocochromanol biosynthetic pathway in maize. The six quantified compounds are shown in bolded orange (tocotrienols) or blue 
(tocopherols) text. The name of genes in bolded red text correspond to genes that are within ± 250 kb of the associated single nucleotide 
polymorphisms (SNPs) identified in our study for an adjacent compound or derivative trait. Compound abbreviations: DMGGBQ, 2,3-dimethyl-
5-geranylgeranyl-1,4-benzoquinol; DMPBQ, 2,3-dimethyl-5-phytylbenzoquinol; GGDP, geranylgeranyl diphosphate; HGA, homogentisic acid; 
HPP, p-hydroxyphenylpyruvate; MGGBQ, 2-methyl-6-geranylgeranyl-1,4-benzoquinol; MPBQ, 2-methyl-6-phytyl-1,4-benzoquinol; PDP, phytyl-
diphosphate; PEP, phosphoenolpyruvate; Phytyl-P, phytyl monophosphate. Gene abbreviations: ggdr, geranylgeranyl diphosphate reductase; 
hggt1, homogentisate geranylgeranyltransferase; hppd1, 4-hydroxyphenylpyruvate dioxygenase; vte1, tocopherol cyclase; vte2, homogentisate 
phytyltransferase; vte3, MPBQ/MGGBQ methyltransferase; vte4, γ-tocopherol methyltransferase; vte5, phytol kinase; vte6, phytol phosphate 
kinase. Pathway abbreviation: MEP, methylerythritol phosphate.
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to 87%, depending on age and ethnicity (Ford et al., 2006; 
McBurney et al., 2015). The substandard consumption of 
vitamin E in the diet has been associated with increased 
risk of cardiovascular diseases (Knekt et al., 1994; Kushi 
et al., 1996). Furthermore, limited evidence exists to sup-
port the association of vitamin E intake levels with other 
chronic diseases (Linus Pauling Institute, 2015).

Sweet corn is the third most abundantly consumed 
vegetable in the United States after tomato (Solanum lyco-
persicum L.) and potato (Solanum tuberosum L.) (USDA, 
2018b) but the vitamin E level [100% α-tocopherol + 30% 
α-tocotrienol + 10% γ-tocopherol; Institute of Medicine 
(2000)] provided from a 100-g intake (one medium to 
large ear of sweet corn) is only about 2.2% of the rec-
ommended daily allowance (RDA) (Xie et al., 2017). 
Although the vitamin E content of sweet corn is lower 
than that of tomato (3.6% of the RDA for 100 g) but 
higher than that of potato (0.3% of the RDA for 100 g) 
(USDA, 2018a), considerable phenotypic diversity for 
tocopherols has been reported in a small panel of sweet 
corn lines and that diversity was highly stable across 
growing environments (Kurilich and Juvik, 1999; Ibra-
him and Juvik, 2009). This suggests that natural variation 
for vitamin E could be harnessed in sweet corn breeding 
programs to help address vitamin E insufficiencies where 
this vegetable is frequently consumed.

The tocochromanol biosynthetic pathway has been 
fully elucidated and involves 36 enzymatic reactions 
that are conserved across plant species [reviewed in Del-
laPenna and Mène-Saffrané (2011); Fig. 1). The aromatic 
head group for all tocochromanols is homogentisic acid, 
produced via the shikimate pathway, whereas the hydro-
phobic tail groups for tocochromanols are generated from 
isopentenyl pyrophosphate synthesized by the plastid-
localized methylerithritol phosphate (MEP) pathway. Con-
densation of homogentisic acid with phytyl-diphosphate 
by homogentisate phytyltransferase VTE2 or with gera-
nylgeranyl diphosphate by homogentisate geranylgeranyl-
transferase (HGGT1) produces the committed precursors 
for tocopherols and tocotrienols, respectively, which, in 
turn, are methylated (VTE3 and VTE4) and cyclized 
(VTE1) in various sequences and combinations to yield 
the α, β, γ, and δ isoforms. Geranylgeranyl diphosphate 
for tocotrienol synthesis in maize endosperm is produced 
directly from isopentenyl pyrophosphate, whereas the 
phytyl-diphosphate used for tocopherol synthesis in the 
maize embryo is generated by an indirect route involving a 
chlorophyll-based cycle (Diepenbrock et al., 2017).

Through several genome-wide association stud-
ies (GWAS) of mature maize kernels over recent years, 
a number of genes responsible for natural variation in 
tocochromanols and vitamin E levels have been identi-
fied. Li et al. (2012) reported a strong association between 
vte4 and α-tocopherol content in maize kernels, with 
deeper insights into this association provided by Lipka et 
al. (2013). Lipka et al. (2013) also demonstrated the much 
weaker association of vte1, hggt1, and an arogenate/pre-
phenate dehydratase with grain tocotrienol levels. In the 

US maize nested association mapping (NAM) panel, eight 
genes among the 81 a priori genes in the genome that 
encode one of the 36 enzymatic reactions were identified 
to be associated with natural variation of tocochromanols 
in maize grain (Diepenbrock et al., 2017). Another six 
loci encoding novel activities also were identified, includ-
ing, most notably, two protochlorophyllide reductases 
(por1 and por2), which surprisingly explained the major-
ity of tocopherol content variation in maize grain. Most 
recently, Wang et al. (2018) associated the genes involved 
in fatty acid biosynthesis, protein import into the chlo-
roplast, chlorophyll b degradation, and the regulation of 
chlorophyll biosynthesis with tocopherol grain traits.

These findings from GWAS of tocochromanols in 
maize grain at physiological maturity (dry kernel stage) 
serve as a starting point for identifying the genes respon-
sible for quantitative variation of tocochromanols in 
developing kernels of fresh sweet corn. However, sweet 
corn constitutes a distinct subpopulation that has limited 
representation in maize diversity panels (Flint-Garcia 
et al., 2005; Romay et al., 2013). Indeed, Doebley et al. 
(1988) and Gerdes and Tracy (1994) suggested that sweet 
corn and dent corn represent two distinct breeding 
pools, with most sweet corn lines descended from three 
open-pollinated cultivars: ‘Golden Bantam’, ‘Stowell’s 
Evergreen’, and ‘Country Gentleman’. Therefore, the 
favorable alleles for increased tocochromanol content 
observed in dent corn studies may not be present at high 
frequency or even at all in the sweet corn germplasm 
pool. Additionally, Kurilich and Juvik (1999) and Xie et 
al. (2017) reported that tocopherols tend to increase as 
sweet corn kernels mature. Therefore, selecting for alleles 
of causal genes that are favorably expressed early in ker-
nel development is critically important, especially given 
that fresh sweet corn is harvested around 18 to 21 d after 
pollination (DAP) (Jennings and McCombs, 1969).

All sweet corn has one or more mutations in the 
genes involved in the starch biosynthesis pathway that 
cause kernels to accumulate sugars in the endosperm in 
place of the starch accumulated in wild-type dent corn 
(Tracy, 1997). The homozygous sh2 mutation results 
in the loss of an adenosine diphosphate-glucose pyro-
phosphorylase subunit and the accumulation of high 
levels of sucrose (Michaels and Andrew, 1986). The 
homozygous su1 mutation disrupts a starch debranch-
ing enzyme that leads to higher levels of water-soluble 
phytoglycogen, along with increased sucrose, but at 
levels lower than sh2 (Doehlert et al., 1993). Other muta-
tions in the starch pathway used singly or in combina-
tion for breeding sweet corn include but are not limited 
to sugary enhancer1 (se1), brittle2 (bt2), and amylose-
extender:dull:waxy (aeduwx) (Hannah et al., 1993). 
Depending on the single mutation, pleiotropic effects 
related to compromised biosynthetic capacity can be 
exerted on other enzymes from the starch biosynthesis 
pathway [reviewed in Tetlow et al. (2004)]. Illustrative 
of an interaction with a key phytohormone, ethylene 
has been shown to impart pleiotropic effects on maize 
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endosperm development of sh2 lines (Young et al., 1997). 
Given the potential amplified connectedness between 
starch-deficient endosperm mutants and other biochemi-
cal pathways, the loci and alleles that control the levels of 
tocotrienols—the class of tocochromanols that are pre-
dominantly synthesized in the endosperm (Grams et al., 
1970; Weber, 1987)—may differ in the high-sugar envi-
ronment of sweet corn endosperm compared with those 
identified in studies of starch containing dent varieties.

In this study, we constructed a sweet corn association 
panel that captured the genetic diversity of temperate US 
breeding programs to dissect the genetic basis of natural 
variation for tocochromanol content in fresh kernels and 
develop genomic prediction models that could be used to 
enhance fresh sweet corn kernels for tocochromanol and 
vitamin E levels. We conducted (i) a GWAS to identify the 
genes involved in the genetic control of quantitative varia-
tion for tocochromanol levels in fresh (~21 DAP) kernels 
of sweet corn and (ii) genomic prediction studies to deter-
mine the optimal marker density needed to maximize 
predictive abilities for genomic selection in a sweet corn 
biofortification breeding program.

Materials and Methods
Plant Materials and Experimental Design
We constructed an association panel of 411 diverse sweet 
corn inbred lines that were selected to sample the levels 
and patterns of genetic diversity found in the US sweet 
corn germplasm pool. The panel consisted of inbred 
lines homozygous for the starch-deficient endosperm 
mutations su1, su1:se1, sh2, su1sh2, bt2, and aeduwx. An 
additional 19 inbred lines included in the experiment 
were known at the time of inclusion or later confirmed 
(data not shown) not to be sweet corn. The inbred asso-
ciation panel was field-evaluated in the summers of 2014 
and 2015 at Cornell University’s Musgrave Research 
Farm in Aurora, NY. For each year, the panel was sepa-
rated into three sets of varying numbers of lines based 
on plant height, and the sets were randomly partitioned 
into incomplete blocks. Within each set, each incomplete 
block of 20 experimental entries was augmented by the 
random assignment of two check plots depending on 
plant height. The incomplete blocks of sets 1 (short), 2 
(medium), and 3 (tall) each included the two check lines, 
either ‘We05407’ and ‘W5579’, ‘W5579’ and ‘Ia5125’, or 
‘Ia5125’ and ‘IL125b’, respectively. In addition, the posi-
tions of the sets within the field were randomized. Edge 
effects were reduced by planting a commercial sweet corn 
line around the perimeter of each replicate. Experimen-
tal units were one-row plots with a length of 3.05 m and 
inter-row spacing of 0.76 m. There was a 0.91-m alley at 
the end of each plot. In each plot, 24 kernels were planted 
and each plot was thinned to approximately 12 plants. 
Standard sweet corn cultivation practices for the North-
east were followed. Weather data were obtained from an 
automated weather station (Spectrum Technologies, Inc., 
Aurora, IL) located within the field.

In both years, a single complete replication of the 
augmented incomplete block design experiment was 
used for measuring tocochromanol levels. In each plot, 
six plants were self-pollinated by hand and the pol-
lination dates were recorded. Two self-pollinated ears 
were hand-harvested from each plot at 400 growing 
degree-days (~21 DAP) as calculated via the NOAA 
86/50 method (Barger, 1969), representing the immature 
milk stage of kernel development, when sweet corn is 
picked and eaten as a fresh vegetable. Immediately after 
harvest, whole ears were frozen in liquid N and shelled. 
For each sample, frozen kernels were randomly sampled 
and bulked across the two ears to produce a representa-
tive composite kernel sample, then placed in a cryogenic 
vial and maintained at −80°C. For each sample, 20 to 30 
frozen kernels were ground to a fine powder in liquid N. 
Individual ground samples were transferred to a 1.5-mL 
tube cooled in liquid N, then transferred for storage at 
−80°C. Ground kernel samples were packed in dry ice 
and shipped to Michigan State University (East Lansing, 
MI) for extraction and measurement of tocochromanols.

Phenotypic Data Analysis
Tocochromanols were extracted from each ground 
sample, then quantified by high-performance liquid 
chromatography (HPLC) and fluorometry as previ-
ously described (Lipka et al., 2013), with 1 mg mL-1 of 
DL-α-tocopherol acetate added to the extraction buf-
fer as an internal recovery control. The six quantified 
tocochromanol compounds were δ-tocotrienol (δT3), 
γ-tocotrienol (γT3), α-tocotrienol (αT3), δ-tocopherol 
(δT), γ-tocopherol (γT), and α-tocopherol (αT) in μg g-1 
fresh kernel. Additionally, the following 14 sums, ratios, 
and proportions were calculated: total tocotrienols (total 
T3), total tocopherols (total T), total tocochromanols 
(total T3 + T), αT3/γT3, αT/γT, δT3/αT3, δT/αT, δT3/γT3, 
δT/γT, γT3/(γT3 + αT3), γT/(γT + αT), δT3/(γT3 + αT3), 
δT/(γT + αT), and total T/total T3.

To screen the raw HPLC data for significant outliers, we 
initially used the Box–Cox power transformation (Box and 
Cox, 1964) with a simple linear model with genotype, year, 
set within year, block within set within year, and HPLC 
plate within year as fixed effects to identify the most appro-
priate transformation that corrected for unequal variances 
and the non-normality of error terms. The process was con-
ducted using the MASS package in R version 3.2.3 (R Core 
Team, 2015) and tested lambda values ranging from -2 to +2 
in increments of 0.5 before applying the optimal convenient 
lambda for each phenotype (Supplemental Table S1). Next, 
the full mixed linear model that allowed for the estimation 
of genetic effects separately from field design effects, follow-
ing Wolfinger et al. (1997), was fitted for each phenotype in 
ASReml-R version 3.0 (Gilmour et al., 2009). The full model 
fitted was as follows:

( ) ( )
( )

( ) ( )

= m+ + + + ´

+ + ´ +

+ + +e

  

           

         

ijklmnop j jk jkl

m jm jn

ijklmnopjo jp

Y check year set year block set year

genotype genotype year plate year

row yea yr col ear �

[1]
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in which Yijklmnop is an individual phenotypic observation, 
μ is the grand mean, checki is the fixed effect for the ith 
check, yearj is the effect of the jth year, set(year)jk is the 
effect of the kth set within the jth year, block(set × year)jkl 
is the effect of the lth incomplete block within the kth 
set within the jth year, genotypem is the effect of the 
mth experimental genotype (noncheck line), genotype 
× yearjm is the effect of the interaction between the mth 
genotype and jth year, plate(year)jn is the laboratory effect 
of the nth HPLC autosampler plate within the jth year, 
row(year)jo is the effect of the oth plot grid row within 
the jth year, col(year)jp is the effect of the pth plot grid 
column within the jth year, and εijklmnop is the residual 
error effect assumed to be independent and identically 
distributed according to a normal distribution with a 
mean of zero and variance 2

es . Except for the grand mean 
and check term, all other terms were modeled as random 
effects. Degrees of freedom were calculated via the Ken-
ward–Rogers approximation (Kenward and Roger, 1997). 
To detect significant outliers, Studentized deleted residu-
als (Neter et al., 1996) obtained from these mixed linear 
models were examined.

Once all outliers were removed for each tocochro-
manol phenotype, an iterative mixed linear model fitting 
procedure was conducted in ASReml-R version 3.0 (Gilm-
our et al., 2009) with the full model. Likelihood ratio tests 
were conducted to remove all terms from the model fitted 
as random effects that were not significant at α = 0.05 (Lit-
tell et al., 2006) to generate a final, best fitted model for 
each phenotype (Supplemental Fig. S1). The final model 
for each tocochromanol phenotype was used to generate a 
best linear unbiased predictor (BLUP) for each genotype. 
The generated BLUPs were used in a GWAS and tocochro-
manol prediction models (Supplemental Table S2).

Variance component estimates from the reduced 
model were used to estimate heritability ( 2

l̂h ) on a line-
mean basis (Holland et al., 2003; Hung et al., 2012) for 
each tocochromanol phenotype, with the SE of the esti-
mates calculated via the delta method (Lynch and Walsh, 
1998; Holland et al., 2003). Pearson’s r was used to esti-
mate the degree of association between back-transformed 
BLUP values for each pair of tocochromanol traits at α = 
0.05 via the method ‘pearson’ from the function ‘cor.test’ 
in R. The back-transformed BLUP values were calculated 
with the inverse of the given convenient lambda and 
used to represent the true directionality of the relation-
ship between traits (Supplemental Table S3).

DNA Extraction, Sequencing, and Genotyping
For each inbred line, a leaf tissue sample consisting of 
young leaves was collected from a single representative 
plant. The tissue samples were lyophilized and ground 
with a GenoGrinder (Spex SamplePrep, Metuchen, NJ). 
Total genomic DNA was isolated from powdered lyophi-
lized leaf tissue with the DNeasy 96 Plant Kit (Qiagen 
Incorporated, Valencia, CA). The DNA samples were sent 
for genotyping-by-sequencing (GBS) at the Cornell Bio-
technology Resource Center (Cornell University, Ithaca, 

NY, USA) following the procedure of Elshire et al. (2011) 
with ApeKI as the restriction enzyme. Genotyping-by-
sequencing libraries were constructed in 192- or 384-plex 
and sequenced on an NextSeq 500 or Illumina HiSeq 
2500, respectively (Illumina Incorporated, San Diego, 
CA). Sequence data that supported the findings of this 
study have been deposited in the National Center of Bio-
technology Information Sequence Read Archive under 
accession number SRP154923 and in BioProject under 
accession PRJNA482446.

With the raw GBS sequencing data, the genotypes 
at 955,690 high confidence single-nucleotide polymor-
phism (SNP) loci were called with the default param-
eters in the TASSEL 5 GBSv1 production pipeline with 
the ZeaGBSv2.7 Production TagsOnPhysicalMap file 
in B73 RefGen_v2 coordinates (AllZeaGBSv2.7_Prod-
TOPM_20130605.topm.h5, available at panzea.org, 
accessed 25 Sept. 2018) (Glaubitz et al., 2014). There were 
inbred lines from the sweet corn association panel that 
had also been included in the comprehensive genotyping 
study of the USDA-ARS North Central Regional Plant 
Introduction Station collection, conducted by Romay 
et al. (2013). Therefore, existing raw unimputed SNP 
genotypic data for 45 sweet corn lines (ZeaGBSv27_pub-
licSamples_rawGenos_AGPv2–150114.h5, available at 
www.panzea.org, accessed 25 Sept. 2018) that had been 
phenotyped for tocochromanols in this study were used 
instead of generating a redundant GBS sequencing data-
set. The SNP genotype calls from this study and those 
of the 45 lines from Romay et al. (2013) were combined 
and filtered to retain only biallelic SNPs with a call 
rate greater than 10% (i.e., the percentage of lines suc-
cessfully genotyped per SNP), as specified by Romay et 
al. (2013). Missing SNP genotypes were imputed with 
FILLIN (Swarts et al., 2014) with an available set of 
maize haplotype donors that had a window size of 4 kb 
(AllZeaGBSv2.7impV5_AnonDonors4k.tar.gz, available 
at panzea.org, accessed 25 Sept. 2018). This haplotype-
based imputation method is not able to impute all miss-
ing data (Swarts et al., 2014) and thus some missing 
genotype data still remained and had to be filtered.

Upon completion of the imputation procedure, the 
inbred lines known to have bt2 (n = 4) or aeduwx (n = 
2) were removed from the dataset, allowing the panel 
to consist of the endosperm mutations most commonly 
found in the US sweet corn germplasm pool. In TASSEL 
version 5.2.39, additional quality filters imposed fol-
lowing haplotype-based imputation included removing 
SNPs with a call rate less than 70%, a minor allele fre-
quency lower than 5%, heterozygosity greater than 10%, 
an inbreeding coefficient lower than 80%, or a mean read 
depth greater than 15. Additionally, lines with lower than 
a 40% call rate (i.e., the percentage of SNPs successfully 
genotyped for each line) were excluded. The imposi-
tion of these quality filters resulted in a final dataset of 
174,996 high-quality SNPs scored on 384 lines that had 
a BLUP value for at least one tocochromanol trait. The 
raw unimputed SNP genotype calls for the 384 lines are 

panzea.org
www.panzea.org
panzea.org
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available from the Dryad Digital Repository (https://doi.
org/10.5061/dryad.jd5716f, accessed 8 Oct. 2018).

Genome-Wide Association Study
To conduct a GWAS for each phenotype that controlled 
for population structure and familial relatedness, a mixed 
linear model that included the population parameters 
previously determined approximation for enhanced 
computing efficiency (Zhang et al., 2010) was used to test 
for an association between the genotypes of each of the 
174,996 SNPs and BLUP values in the R package GAPIT 
version 2017.08.18 (Lipka et al., 2012). The fitted mixed 
linear models included four principal components (PCs) 
(Price et al., 2006) and a kinship matrix based on Van-
Raden’s Method 1 (VanRaden, 2008) that were calculated 
from a subset of 11,448 genome-wide SNP markers from 
the complete dataset that had not been imputed and had a 
call rate higher than 90%, a minor allele frequency greater 
than 5%, heterozygosity less than 10%, an inbreeding coef-
ficient greater than 80%, and a mean read depth lower 
than 15. Missing genotypes remaining for all SNP markers 
(subset and complete marker datasets) were conservatively 
imputed as a ‘middle’ (heterozygous) value in GAPIT. 
The optimal number of PCs to include as covariates in 
the mixed linear model was determined with the Bayes-
ian information criterion (Schwarz, 1978). A likelihood-
ratio-based R2 statistic (Sun et al., 2010) denoted as R2

LR 
was used to estimate the amount of phenotypic variation 
accounted for by the model. The method of Benjamini and 
Hochberg (1995) was used to account for multiple testing 
by controlling the false discovery rate (FDR) at 5%.

A chromosome-wide approach for implementing a 
multi-locus mixed-model (MLMM) (Segura et al., 2012) to 
resolve association signals involving large-effect genes has 
been previously described (Lipka et al., 2013). Briefly, the 
MLMM method used a stepwise mixed-model regression 
procedure with forward selection and backward elimina-
tion. In the first step of this chromosome-wide implemen-
tation, only SNP markers on the same chromosome with a 
major-effect gene were tested as explanatory variables for 
selection in the optimal model via the extended Bayesian 
information criterion (Chen and Chen, 2008). The impact 
of controlling for the influence of a large-effect gene on 
association signals was then assessed by reconducting the 
GWAS with the MLMM-selected SNP markers included 
as covariates in mixed linear models.

Linkage Disequilibrium
The squared allele-frequency correlation (r2) method 
of Hill and Weir (1988) was used to estimate linkage 
disequilibrium (LD) between pairs of SNP loci in TAS-
SEL version 5.2.39 (Bradbury et al., 2007). The dataset of 
174,996 high-quality SNP markers was used to estimate 
LD, with the exception that the remaining missing SNP 
genotypes were not imputed with the ‘middle’ value prior 
to LD analysis.

Visual Classification of Lines for Endosperm Mutations
The sweet corn lines were evaluated for which endosperm 
mutations they possessed to help us better understand 
the differences in the content and composition of toco-
chromanols in fresh sweet corn kernels among the endo-
sperm mutation group types. In 2014, two self-pollinated 
ears per plot were harvested at physiological maturity 
and dried to ~15% moisture content. For each plot, an 
image of two mature ears on the 1KK green background 
(https://wheatgenetics.org/download/category/21–1kk, 
accessed 25 Sept. 2018) was taken by hand with a digital 
camera (Sony DSC-W730, Sony Corporation, Tokyo, 
Japan). Of the 384 sweet corn inbred lines, 333 of them 
had images that allowed for visual classification of endo-
sperm mutation type. To classify the inbred lines as hav-
ing either the recessive su1 or sh2 endosperm mutation, 
the ears in each image were visually scored by one person 
(Matheus Baseggio) as having kernels with either one of 
two phenotypes: (i) wrinkled and glassy (su1 mutation) 
or (ii) shrunken and opaque to translucent (sh2 muta-
tion) (Boyer and Shannon, 1983). Given the more visually 
complex kernel phenotypes that can result from double 
mutant combinations of endosperm genes (Boyer and 
Shannon, 1983), it was only possible to confidently score 
su1sh2 inbreds as sh2 and su1se1 inbreds as su1.

Marker-Based Classification of Lines  
for Endosperm Mutations
The visual classifications resulted in two binomial pheno-
types (presence or absence of su1; presence or absence of 
sh2) that were used to train genomic prediction models 
separately for classifying the remaining 51 inbred lines. 
The 333 inbred lines with visual kernel scores for the 
presence or absence of sh2 were randomly divided into 
two groups: 284 lines (85%) used as a set for training 
and cross-validating the genomic prediction models and 
49 lines (15%) comprising a test set to assess the error 
of the final selected model. An 85:15 split was also used 
for modeling the presence or absence of su1, with the 
exception that 15 previously known su1sh2 inbreds were 
excluded. This resulted in 271 lines (85%) for training and 
cross-validating the genomic prediction models and 47 
lines comprising the test set for the su1 locus. Given that 
the implemented GBS approach did not target specific 
loci, statistical models were evaluated for their accuracy 
in predicting the presence or absence of the su1 or sh2 
endosperm mutations with the following variable sized 
marker datasets: SNP markers ± 100, 250, 500, 750, or 
1000 kb of su1 (chromosome 4; 41,369,510–41,378,299 
bp) or sh2 (chromosome 3; 216,414,684–216,424,048 bp). 
The marker datasets consisted of markers selected from 
the same 174,996 high-quality SNP markers that were 
also used for GWAS. Prediction of the binomial pheno-
types with SNP markers was evaluated with genomic best 
linear unbiased prediction (GBLUP) (Zhang et al., 2007; 
VanRaden, 2008). To conduct the GBLUP method, a real-
ized relationship matrix based on VanRaden’s Method 
1 (VanRaden, 2008) calculated from SNP markers was 

https://doi.org/10.5061/dryad.jd5716f
https://doi.org/10.5061/dryad.jd5716f
https://wheatgenetics.org/download/category/21
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fitted with the binomial family and logit link function 
in ASReml-R version 3.0 (Gilmour et al., 2009). For each 
locus, the realized relationship matrices were derived 
from the five sets of the variable-sized marker datasets.

The probability of a homozygous recessive genotype 
for each locus was obtained from the cumulative distri-
bution function of the logistic distribution using the five-
fold cross-validation approach reported in Owens et al. 
(2014). The average probability for each kernel phenotype 
was assessed by repeating this process 50 times, with 
inbred lines classified as having a homozygous recessive 
genotype for a given locus if the average probability was 
greater than 0.5. Sensitivity (the proportion of true posi-
tives) and specificity (the proportion of true negatives) 
were calculated for each model, and the SNP marker 
dataset that maximized the sum of sensitivity and speci-
ficity was used to train the GBLUP model with all lines 
from the training set. The error rate of both final optimal 
models, which used the 1000-kb marker dataset for each 
locus, was then assessed on the test set (Supplemental 
Table S4). Next, the same two final models were used to 
predict the presence or absence of the su1 and sh2 endo-
sperm mutations for the 51 uncharacterized lines and 
the previously known 15 su1sh2 inbreds that had been 
excluded from the su1 training and test sets.

Tocochromanol Prediction
The ability of SNP markers to predict each of the 20 toco-
chromanol phenotypes from the 384 inbred lines was 
evaluated with GBLUP (Zhang et al., 2007; VanRaden, 
2008). The GBLUP method was conducted by calculat-
ing a realized relationship matrix based on VanRaden’s 
Method 1 (VanRaden, 2008) from SNP markers, followed 
by model fitting in ASReml-R version 3.0 (Gilmour et al., 
2009). The realized relationship matrices were derived 
from three different sets of SNPs that varied in marker 
number: genome-wide, pathway-level, and tocochromanol 
quantitative trait locus (QTL)-targeted. The genome-wide 
dataset included the 174,996 high-quality SNP markers, 
whereas the pathway-level dataset consisted of 4819 SNP 
markers within ± 250 kb of the 81 a priori candidate genes 
based on prior knowledge of the tocochromanol pathway 
and its precursors and on homology with Arabidopsis 
thaliana (L.) Heynh. (Diepenbrock et al., 2017; Supple-
mental Table S5). The tocochromanol QTL-targeted data-
set included 946 SNP markers within ± 250 kb of the 14 a 
priori identified genes (Supplemental Table S6) underlying 
joint-linkage (JL) QTL associated with grain tocochroma-
nol levels in the US maize NAM panel (Diepenbrock et al., 
2017). The fivefold cross-validation approach described in 
Owens et al. (2014) was used to assess the predictive abil-
ity obtained for each phenotype by assessing the Pearson’s 
correlation between observed and genomic estimated 
breeding values. This process was repeated 50 times for 
each phenotype, with the mean of these correlations 
reported as the predictive ability. The same cross-valida-
tion folds allowed for a direct comparison among models. 
Additionally, the stratified sampling approach enabled 

each fold to be representative of the genotype frequencies 
for endosperm mutants (su1, sh2, and su1sh2) observed in 
the entire population. All prediction analyses were per-
formed with and without a covariate accounting for the 
type of endosperm mutation (su1, sh2, or su1sh2).

Results
Phenotypic Variation
Phenotypic variation for tocochromanol traits was 
evaluated in an association panel that was constructed 
to comprehensively represent the genetic diversity that 
exists in temperate US sweet corn breeding programs. 
The measurement of six tocochromanol compounds by 
HPLC in kernels sampled at the immature milk stage 
from 384 inbred lines revealed γ-species to be the most 
abundant, followed by α- and δ-species for both tocoph-
erols and tocotrienols (Table 1). On average, the amount 
of γT3 moderately exceeded the sum total of all three 
tocopherol species in the sweet corn population. When 
lines were separated by the presence or absence of endo-
sperm mutations through the combination of visual and 
marker-based classifications (Supplemental Table S2 and 
Supplemental Table S4), the average quantities of γT3 
and δT3 were at significantly (P < 0.0001) greater levels 

Table 1. Means and ranges for back-transformed best linear 
unbiased predictors (BLUPs) of 20 fresh kernel tocochromanol 
traits evaluated in the sweet corn association panel and estimated 
heritability ( 2

l̂h ) on a line-mean basis across 2 yr.

Trait† Lines
BLUPs Heritabilities

Mean SD‡ Range Estimate SE§
—— μg g-1 fresh weight ——

αT 383 1.53 0.70 0.33–4.72 0.87 0.01
αT3 384 1.91 0.43 1.04–3.99 0.68 0.03
δT 383 0.34 0.20 0.04–1.51 0.82 0.02
δT3 384 0.50 0.49 0.07–3.35 0.89 0.01
γT 383 8.67 2.65 1.82–17.4 0.78 0.02
γT3 384 10.41 4.92 2.11–36.96 0.84 0.02
Total T 383 9.61 2.80 2.21–23.48 0.79 0.02
Total T3 384 12.60 4.95 3.48–40.16 0.81 0.02
Total T + T3 383 22.67 6.00 8.34–49.67 0.81 0.02
αT/γT 383 0.20 0.13 0.034–0.98 0.87 0.01
δT/αT 384 0.28 0.24 0.015–1.63 0.85 0.02
δT/γT 384 0.04 0.02 0.015–0.18 0.88 0.01
δT/(γT + αT) 384 0.04 0.02 0.007–0.16 0.86 0.01
γT/(γT + αT) 383 0.84 0.09 0.513–0.97 0.86 0.01
αT3/γT3 384 0.23 0.13 0.061–0.95 0.83 0.02
δT3/αT3 383 0.27 0.25 0.030–1.59 0.87 0.01
δT3/γT3 383 0.04 0.02 0.012–0.18 0.87 0.01
δT3/(γT3 + αT3) 383 0.04 0.02 0.010–0.15 0.88 0.01
γT3/(γT3 + αT3) 384 0.82 0.07 0.528–0.94 0.82 0.02
Total T/Total T3 384 0.86 0.40 0.211–3.09 0.81 0.02

† αT, α-tocopherol; αT3, α-tocotrienol; δT, δ-tocopherol; δT3, δ-tocotrienol; γT, γ-tocopherol; 
γT3, γ-tocotrienol; Total T3, total tocotrienols; Total T, total tocopherols; Total T + T3, total 
tocochromanols.

‡ Standard deviation of the BLUPs.

§ Standard error of the heritabilities.
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in the sh2 (n = 76) and su1sh2 (n = 19) groups than in the 
su1 (n = 289) group (Table 2). Interestingly, none of the 
other four tocochromanol compounds showed a similar 
pattern, with the exception that sh2 had a significantly 
greater level of αT3 relative to the su1 and su1sh2 groups.

Even though the six compounds are the product of a 
shared biosynthetic pathway, correlations between com-
pounds only exceeded ~0.20 for two pairs of compounds 
(Supplemental Fig. S2). The correlation between δT3 and 
γT3 was 0.77, whereas the correlation of δT with γT was 
0.76. The nonexistent to weak correlations between other 
compound pairs imply the lack of a deeply shared genetic 
architecture, reflected by tocotrienols being synthesized 
predominantly in endosperm and tocopherols predomi-
nantly in embryo. As shown in Table 1, the six tocochro-
manol compounds and 14 sum, ratio, and proportion traits 
had an average heritability of 0.83, with estimates ranging 
from 0.68 (αT3) to 0.89 (δT3). These high heritabilities sug-
gest that the extent of phenotypic variation for the toco-
chromanol traits is mostly under genetic control and would 
be responsive to selection in breeding programs.

Genome-wide Association Study
The genetic architecture of natural variation for toco-
chromanols in kernels harvested at the immature milk 
stage was dissected in an association panel of 384 sweet 

corn inbred lines scored with 174,996 high-quality SNP 
markers at genome-wide coverage. Even though sweet 
corn is a distinct subpopulation of maize (Romay et al., 
2013), moderately weak patterns of population structure 
appeared to be defined by starch-deficient endosperm 
mutations within the association panel as inferred by a 
principal component analysis of the SNP genotypic data 
(Fig. 2). In the sweet corn association panel, the median 
LD (50th percentile) estimated with the 174,996 genome-
wide SNP markers decayed to low (background) levels 
(r2 < 0.1) by ~12 kb, but with a large variance in LD struc-
ture (Supplemental Fig. S3). Given the persistence of LD 
at higher percentile cutoffs, the potential importance of 
distant regulatory elements in the genetic control of kernel 
tocochromanols (Li et al., 2012), and to intersect with the 
GWAS results of Lipka et al. (2013), the candidate gene 
search space was limited to ± 250 kb (median r2 ≤ 0.05) of 
GWAS-detected SNP markers. Through implementation 
of a mixed linear model that controlled for population 
stratification and unequal relatedness, 336 unique SNPs 
were found to significantly associate with one or more 
phenotypes at a genome-wide FDR of 5% (Supplemental 
Table S7 and Supplemental Fig. S4). At least one significant 
SNP was found on every maize chromosome, with the 
exception of chromosome 10, but 87.2% of the 336 unique 
SNPs were localized to chromosomes 2, 3, 4, and 5.

The only significant association signals detected for 
αT were on chromosome 5 (Fig. 3A), with the signal peak 
defined by two SNPs (S5_200369243 and S5_200369213; 
P-values 2.40 × 10−8 and 3.10 × 10−8, respectively). The 
two SNPs were separated by a distance of 30 bp, in per-
fect LD with each other, and located within an intron 

Table 2. Back-transformed estimated effects of endosperm mutation 
type for 20 fresh sweet corn kernel tocochromanol traits.

Trait† su1 sh2 su1sh2 P-value‡
———— μg g-1 fresh weight ————

αT 1.36 1.39 1.48 0.763
αT3 1.84 b 1.98 a 1.70 b 0.006
δT 0.30 0.27 0.32 0.407
δT3 0.29 b§ 0.72 a 0.69 a <0.0001
γT 8.59 8.08 8.13 0.276
γT3 8.53 b 14.77 a 13.89 a <0.0001
Total T 9.32 8.83 9.08 0.374
Total T3 10.52 b 16.58 a 15.68 a <0.0001
Total T + T3 20.70 b 26.22 a 25.32 a <0.0001
αT/γT 0.16 0.17 0.18 0.464
δT/αT 0.21 0.20 0.22 0.728
δT/γT 0.04 0.04 0.05 0.116
δT/(γT + αT) 0.03 0.03 0.04 0.287
γT/(γT + αT) 0.84 0.84 0.82 0.495
αT3/γT3 0.23 b 0.15 a 0.13 a <0.0001
δT3/αT3 0.16 b 0.35 a 0.41 a <0.0001
δT3/γT3 0.04 b 0.05 a 0.05 a <0.0001
δT3/(γT3 + αT3) 0.03 b 0.04 a 0.04 a <0.0001
γT3/(γT3 + αT3) 0.80 b 0.86 a 0.87 a <0.0001
Total T/Total T3 0.89 b 0.53 a 0.58 a <0.0001

† αT, α-tocopherol; αT3, α-tocotrienol; δT, δ-tocopherol; δT3, δ-tocotrienol; γT, γ-tocopherol; γT3, 
γ-tocotrienol; Total T3, total tocotrienols; Total T, total tocopherols; Total T + T3, total tocochromanols.

‡ P-value from a one-way ANOVA F-test for the endosperm mutation type effect. A bolded P-value indicates 
a statistically significant difference between two or more endosperm mutation type groups (P < 0.05).

§ Sweet corn lines grouped by endosperm mutation type having labels with the same letter are not 
significantly different according to the Tukey–Kramer honest significant difference test (P < 0.05). The test 
was only performed for traits that had a significant F-test.

Fig. 2. Principal component analysis of the sweet corn diversity 
panel. Genetic differentiation of 384 sweet corn inbred lines as 
revealed by the first two principal components from a principal com-
ponent analysis of the single nucleotide polymorphism marker data.
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of the gene encoding γ-tocopherol methyltransferase 
(vte4, GRMZM2G035213), which catalyzes the conver-
sion of γT to αT (Fig. 1). An additional significant SNP 
positioned more than 250 kb away from the start of the 
open reading frame for the vte4 gene and in linkage 
equilibrium (r2 < 0.01) with the other two significant 
intronic vte4 SNPs was associated with αT and the αT/γT 
ratio (S5_200111824, P-values 5.38 × 10−7 and 1.65 × 10−7, 
respectively) (Supplemental Fig. S5).

When a chromosome-wide MLMM was used to 
clarify the association signals in this genomic interval, 
the optimal model obtained by the MLMM for αT con-
tained the peak SNP S5_200369243, whereas the peak SNP 
S5_200111824 was selected in the optimal model for the 

αT/γT ratio (Supplemental Table S8). For each of these two 
tocochromanol traits, there were no longer any significant 
associations at a 5% FDR when GWAS was conducted with 
their MLMM-selected SNP as a covariate in the mixed 
linear model (Fig. 3B). Notably, the allele of the peak SNP 
S5_200369243 associated with higher levels of αT was fixed 
in su1sh2 lines and all but two sh2 lines (Supplemental 
Table S9). The results from this conditional analysis suggest 
that vte4 and, potentially, a distant regulatory element are 
responsible for variation in the αT-related traits.

Within the pericentromeric region of chromosome 5, 
significant associations were identified between 40 SNPs 
that spanned a 3.3-Mb interval and at least one of the 
two tocotrienol-related traits δT3/(γT3 + αT3) and δT3/
γT3 (Fig. 4A). The most significant SNP for δT3/γT3 
was S5_131738084 (P-value 7.64 × 10−9); S5_133512770 
(P-value 3.55 × 10−8) was the peak SNP for δT3/(γT3 + 
αT3). The latter of the two SNPs was located within an 
intron of the gene encoding tocopherol cyclase (vte1, 
GRMZM2G009785), an enzyme that catalyzes the syn-
thesis of both γT3 and δT3. Two additional significant 
SNPs associated with both δT3/γT3 and δT3/(γT3 + 
αT3) (S5_133505829, P-values 5.58 × 10−8 and 1.67 × 
10−7; S5_133501992, P-values 6.83 × 10−8 and 1.94 × 10−7, 
respectively) were also located within the vte1 gene. To 
further resolve signals in the recombination-suppressed 
vte1 region, all SNPs on chromosome 5 were considered 
when conducting the MLMM approach for the two toco-
trienol traits. Only the peak SNP was selected in the opti-
mal model for each trait. When each peak SNP was fitted 
separately as a covariate in the mixed linear model, all 
other significant associations in the vicinity of vte1 were 
eliminated for δT3/(γT3 + αT3) and δT3/γT3 (Fig. 4B and 
Supplemental Fig. S6).

Signals of association were also identified for tocotri-
enol traits in the pericentromeric region of chromosome 9. 
The start of the open reading frame for a gene encod-
ing a homogentisate geranylgeranyltransferase (hggt1, 
GRMZM2G173358), the committed step in tocotrienol 
biosynthesis (Cahoon et al., 2003), was 138 kb downstream 
from a SNP (S9_92345469, P-value 4.47 × 10−5; Supple-
mental Fig. S7) on chromosome 9 that was significantly 
associated with γT3, the most abundant tocotrienol. 
Additionally, one SNP each was found to be significantly 
associated with total T3 (S9_91476108, P-value 4.28 × 10−5) 
and the total T/total T3 ratio (S9_90663281, P-value 2.14 × 
10−5). Indicative of the long-range LD in this region, these 
two SNPs were in strong (S9_91476108, r2 = 0.74) to mod-
erate (S9_90663281, r2 = 0.34) LD with SNP S9_92345469, 
although both SNPs were more than 1 Mb away from 
hggt1. Neither these nor any other SNPs were selected by 
the MLMM for the three tocotrienol traits. This was not 
unexpected, given that these were among the relatively 
weaker significant associations for tocochromanol traits in 
the sweet corn association panel.

Extensive association signals were identified for mul-
tiple tocotrienol traits that colocalized with two genes 
encoding enzymes involved in kernel starch biosynthesis, 

Fig. 3. Genome-wide association study for α- tocopherol (αT) content 
in fresh kernels of sweet corn. (A) Scatter plot of association results 
from a mixed model analysis and linkage disequilibrium (LD) estimates 
(r2). The vertical lines are –log10 P-values of single nucleotide polymor-
phisms (SNPs) and blue color represents SNPs that are statistically sig-
nificant at a 5% false discovery rate (FDR). Triangles are the r2 values of 
each SNP relative to the peak SNP (indicated in red) at 200,369,243 
bp (B73 RefGen_v2) on chromosome 5. The red horizontal dashed 
line indicates the –log10 P-value of the least statistically significant SNP 
at a 5% FDR. The black vertical dashed line indicates the genomic 
position of the γ-tocopherol methyltransferase gene (vte4). (B) Scat-
ter plot of association results from a conditional mixed linear model 
analysis and LD estimates (r2). The peak SNP (S5_200369243) from 
the optimal multi-locus mixed-model was included as a covariate in the 
mixed linear model to control for the vte4 effect.
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adenosine diphosphate-glucose pyrophosphorylase, large 
subunit (sh2, GRMZM2G429899) and isoamylase-type 
starch debranching enzyme 1 (su1, GRMZM2G138060). 
Recessive mutations for either of these genes inhibit 
starch formation and increase sugar levels in the endo-
sperm (Creech, 1965), the tissue in which tocotrienols 
are synthesized (Grams et al., 1970; Weber, 1987). On 
chromosome 3, 38 SNPs spanning a ~4 Mb interval that 
included sh2 were significantly associated with at least 
one of eight tocotrienol-related traits (Fig. 5A). Similarly, 
179 SNPs that covered a 10.2-Mb region encompassing 
su1 on chromosome 4 were found to be significantly 
associated with one or more of seven tocotrienol-related 
traits (Fig. 5B). In concordance with the findings of 

Wilson et al. (2004), long-range patterns of LD defined 
both the sh2 and su1 genomic regions (Fig. 5A and B), 
thus limiting the mapping resolution. Of these 217 total 
SNPs from chromosomes 3 and 4, all but one of them 
were also significantly associated with the type of endo-
sperm mutation when used as a phenotype (su1, sh2, or 
su1sh2) for the 384 lines in GWAS (Supplemental Fig. S8).

Given the strong diffuse signals of association at 
su1 and sh2 and their potential contribution to distant 
complex associations (interchromosomal LD of r2 = 0.61 
between the peak SNPs S3_216256039 and S4_41789076 
at sh2 and su1, respectively), GWAS was reconducted for 
all 20 tocochromanol traits with the type of endosperm 

Fig. 5. Genome-wide association study for δ-tocotrienol (δT3) content 
in fresh kernels of sweet corn. (A) Scatter plot of association results 
from a mixed linear model analysis and linkage disequilibrium (LD) 
estimates (r2). The vertical lines are -log10 P-values of single nucleotide 
polymorphisms (SNPs) and blue color represents SNPs that are statisti-
cally significant at a 5% false discovery rate (FDR). Triangles are the 
r2 values of each SNP relative to the peak SNP (indicated in red) at 
217,572,130 bp (B73 RefGen_v2) on chromosome 3. The red hori-
zontal dashed line indicates the -log10 P-value of the least statistically 
significant SNP at a 5% FDR. The black vertical dashed line indicates 
the genomic position of the gene shrunken2 (sh2). (B) Scatter plot of 
association results from a mixed linear model analysis and LD esti-
mates (r2). The vertical lines are -log10 P-values of SNPs and blue color 
represents SNPs that are statistically significant at a 5% FDR. Triangles 
are the r2 values of each SNP relative to the peak SNP (indicated in 
red) at 41,789,076 bp (B73 RefGen_v2) on chromosome 4. The black 
vertical dashed line indicates the position of the gene sugary1 (su1).

Fig. 4. Genome-wide association study for the ratio of δ-tocotrienol 
(δT3) to the sum of γ-tocotrienol (γT3) and αT3 [δT3/(γT3 + αT3)] in 
fresh kernels of sweet corn. (A) Scatter plot of association results from 
a mixed linear model analysis and linkage disequilibrium (LD) esti-
mates (r2). The vertical lines are –log10 P-values of single nucleotide 
polymorphisms (SNPs) and blue color represents SNPs that are statis-
tically significant at a 5% false discovery rate (FDR). Triangles are the 
r2 values of each SNP relative to the peak SNP (indicated in red) at 
133,512,770 bp (B73 RefGen_v2) on chromosome 5. The red hori-
zontal dashed line indicates the –log10 P-value of the least statistically 
significant SNP at a 5% FDR. The black vertical dashed line indicates 
the genomic position of the tocopherol cyclase gene (vte1). (B) Scat-
ter plot of association results from a conditional mixed linear model 
analysis and LD estimates (r2). The peak SNP (S5_133512770) from 
the optimal multi-locus mixed-model was included as a covariate in 
the mixed linear model to control for the vte1 effect.
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mutation (su1, sh2, or su1sh2) as a covariate in the mixed 
linear model. When we controlled for association signals 
at su1 and sh2, the significant association of SNPs (P-val-
ues 3.37 × 10-10 to 1.43 × 10−5) encompassing vte1 with 
δT3/(γT3 + αT3) and δT3/γT3 still remained (Supplemen-
tal Fig. S9 and Supplemental Table S10). Additionally, the 
two SNPs within vte4 (S5_200369243 and S5_200369213) 
were still found to be significantly associated with αT 
(P-values 2.21 × 10−8 and 2.81 × 10−8, respectively). In 
contrast, SNP S9_92345469 (P-value 6.34 × 10−5) within 
200 kb of hggt1, which was associated with γT3 when not 
controlling for endosperm mutation type was no longer 
significant at 5% FDR (Supplemental Fig. S9). Interest-
ingly, the alleles of this SNP were not equally distributed 
between su1 and sh2 lines, such that all but one of the 
76 sh2 lines were fixed for the SNP allele associated with 
higher levels of γT3 (Supplemental Table S9).

To further clarify the association signal at vte1 and 
of additional loci potentially masked by the endosperm 
effect, an MLMM analysis with endosperm mutation 
type as a covariate was conducted on a chromosome-
wide level for tocotrienol-related traits. The optimal 

models obtained for δT3/γT3 and δT3/(γT3 + αT3) both 
included the SNP S5_131738084 (Supplemental Table 
S8), which was also the MLMM-selected peak SNP for 
δT3/γT3 when not controlling for endosperm mutation 
type. Although 1.76 Mb from vte1, this SNP was in high 
LD with four SNPs contained in vte1 (r2 = 0.60–0.81) 
that were significantly associated with δT3/γT3 and δT3/
(γT3 + αT3) when controlling for endosperm mutation 
type. Additionally, the MLMM analysis resulted in the 
selection of the same single SNP (S5_214707875) for αT3/
γT3 and γT3/(γT3 + αT3), representing a novel association 
for these two tocotrienol traits on chromosome 5 (Supple-
mental Table S8). This SNP is within a gene encoding a 
zinc finger family protein (GRMZM2G178038).

With endosperm mutation type and the two 
MLMM-identified SNPs (S5_131738084 and 
S5_214707875) as covariates in the mixed linear model, 
GWAS was reconducted for all tocochromanol traits 
(Supplemental Table S11). It was found that one or 
more tocotrienol traits were significantly associated 
with a total of seven SNPs at 5% FDR (Supplemental 
Table S11). On chromosome 1, two SNPs (S1_279565998 

Table 3. Predictive abilities of genomic prediction models using three marker sets as predictors and significant marker associations for 20 
fresh sweet corn kernel tocochromanol traits.

Trait

GBLUP GBLUP with endosperm mutation type covariate
Significant marker–
trait associations¶

Genome-wide† Pathway-level‡ QTL targeted§ Genome-wide Pathway-level QTL targeted
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

αT# 0.38 0.02 0.37 0.02 0.36 0.02 0.38 0.02 0.37 0.02 0.36 0.02 3
δT 0.40 0.03 0.34 0.02 0.27 0.02 0.39 0.03 0.33 0.02 0.26 0.03 0
γT 0.39 0.02 0.36 0.02 0.30 0.02 0.40 0.02 0.36 0.02 0.30 0.02 0
Total T 0.42 0.01 0.39 0.02 0.33 0.02 0.43 0.01 0.39 0.02 0.33 0.02 0
αT/γT 0.32 0.03 0.32 0.02 0.31 0.02 0.32 0.03 0.31 0.02 0.30 0.02 1
δT/αT 0.35 0.03 0.30 0.02 0.29 0.02 0.34 0.03 0.28 0.02 0.27 0.02 0
δT/γT 0.45 0.03 0.35 0.02 0.28 0.02 0.44 0.03 0.34 0.02 0.27 0.03 0
δT/(γT + αT) 0.41 0.03 0.30 0.02 0.24 0.02 0.40 0.04 0.29 0.02 0.23 0.03 0
γT/(γT + αT) 0.30 0.03 0.29 0.02 0.29 0.02 0.29 0.03 0.28 0.02 0.28 0.02 0
Average T 0.38 0.34 0.30 0.38 0.33 0.29 0.44
αT3 0.44 0.02 0.40 0.02 0.31 0.02 0.44 0.02 0.40 0.02 0.31 0.02 0
δT3 0.65 0.01 0.53 0.02 0.41 0.02 0.70 0.01 0.66 0.01 0.59 0.01 230
γT3 0.62 0.01 0.53 0.02 0.46 0.02 0.67 0.01 0.64 0.01 0.62 0.01 174
Total T3 0.61 0.01 0.52 0.02 0.44 0.02 0.65 0.01 0.63 0.01 0.59 0.01 165
αT3/γT3 0.59 0.01 0.49 0.02 0.46 0.02 0.61 0.01 0.55 0.01 0.56 0.01 5
δT3/αT3 0.68 0.01 0.55 0.02 0.46 0.02 0.71 0.01 0.64 0.01 0.61 0.01 83
δT3/γT3 0.57 0.01 0.47 0.02 0.27 0.03 0.61 0.01 0.55 0.02 0.41 0.02 0
δT3/(γT3 + αT3) 0.62 0.01 0.51 0.02 0.33 0.02 0.66 0.01 0.60 0.01 0.48 0.02 95
γT3/(γT3 + αT3) 0.57 0.01 0.49 0.02 0.45 0.02 0.59 0.01 0.53 0.02 0.54 0.02 2
Average T3 0.59 0.50 0.40 0.63 0.58 0.52 83.78
Total T3 + T 0.55 0.01 0.49 0.02 0.43 0.02 0.57 0.01 0.55 0.01 0.52 0.01 0
Total T/Total T3 0.49 0.02 0.38 0.02 0.28 0.02 0.56 0.01 0.52 0.01 0.49 0.01 120
Overall average 0.49 0.42 0.35 0.51 0.46 0.42 43.90

† 174,996 genome-wide markers.

‡ 4819 markers within ± 250 kb of 81 a priori candidate genes.

§ 946 markers within ± 250 kb of 14 a priori genes underlying joint-linkage quantitative trait loci (QTL) associated with grain tocochromanol levels in the US maize nested association mapping panel.

¶ The number of significant marker associations for each trait in a genome-wide association study without covariates at a genome-wide false discovery rate of 5%.

#  αT, α-tocopherol; αT3, α-tocotrienol; δT, δ-tocopherol; δT3, δ-tocotrienol; γT, γ-tocopherol; γT3, γ-tocotrienol; Total T3, total tocotrienols; Total T, total tocopherols; Total T + T3, total tocochromanols; 
GBLUP, genomic best linear unbiased prediction.
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and S1_279566000) in perfect LD and located within 
a gene encoding a peroxidase superfamily protein 
(GRMZM2G047456) were significantly associated 
(P-values 3.91 × 10−7 and 5.42 × 10−7) with δT3/γT3. 
These two SNPs also had a slightly weaker association 
(FDR-adjusted P-value of 0.06) with δT3/(γT3 + αT3). 
Significant associations were also detected between 
total T3 and five SNPs (P-values 1.24 × 10−7–1.19 × 10−6) 
contained within (two SNPs) or ~225 to 590 kb away 
(three SNPs) from a gene that encoded an abscisic acid or 
stress-induced protein (HVA22, GRMZM2G311011) on 
chromosome 2. Additionally, one of these five SNPs was 
significantly associated with δT3 at the 5% FDR level. 
Although it is tempting to speculate on the biological 
involvement of these three associated genes, higher map-
ping resolution in combination with gene expression pro-
filing and mutagenesis approaches are needed to assess 
the potential contribution of these identified novel loci to 
the genetic basis of tocotrienol traits more completely.

Prediction of Tocochromanols
The promise of genomic selection as an approach for 
the genetic improvement of fresh kernels for levels of 
tocochromanols and vitamin E in sweet corn breed-
ing populations was evaluated. The predictive ability of 
whole-genome prediction (WGP) was assessed for all 20 
tocochromanol phenotypes from the 384 inbred lines 
with the genome-wide dataset of 174,996 SNP markers. 
This analysis revealed a predictive ability of 0.49 aver-
aged across the 20 phenotypes, with abilities ranging 
from 0.30 for γT/(γT + αT) to 0.68 for δT3/αT3 (Table 3). 
When all traits were considered, the correlation between 
heritabilities and predictive abilities was not statistically 
significant at a level of α = 5% (r = 0.18; P-value = 0.44). 
On average, tocotrienol-related traits had a higher pre-
dictive ability (average = 0.59) than tocopherol-related 
traits (average = 0.38). There was a strong, positive cor-
relation (r = 0.65, P-value < 0.01) between the number of 
significant markers observed in GWAS at 5% FDR and 
predictive abilities (Table 3), which could partly account 
for the difference in predictive abilities between tocoph-
erol and tocotrienol phenotypes.

Given the oligogenic nature of tocochromanol grain 
traits in maize, where most of the phenotypic variation 
is explained by a few moderate- to large-effect loci asso-
ciated with biosynthetic pathways (Diepenbrock et al., 
2017), pathway-level and tocochromanol QTL-targeted 
marker datasets were also evaluated for their predictive 
abilities. These two marker datasets included SNPs in 
proximity of either 81 a priori candidate genes from the 
precursor and core tocochromanol pathways in maize 
(Supplemental Table S5) or 14 genes underlying the QTL 
responsible for 56 to 93% of tocochromanol variation 
in maize grain (Supplemental Table S6; Diepenbrock 
et al., 2017). On average, the predictive abilities of both 
the pathway-level (0.42) and tocochromanol QTL-
targeted (0.35) marker datasets for the 20 tocochroma-
nol phenotypes were lower than that obtained with the 

genome-wide marker dataset (0.49; Table 3). Specifically, 
tocotrienol-related traits showed the highest accuracy 
reduction, with an average decrease of 9 percentage points 
(81 candidate gene set) and 19 percentage points (14 QTL 
gene set) relative to the genome-wide marker dataset. In 
contrast, there was an average decrease of only 4 to 8 per-
centage points for tocopherol-related traits across the two 
loci-focused marker sets, suggesting that the inclusion 
of additional genes are more critically needed to predict 
tocotrienol levels in sweet corn accurately.

In an effort to improve predictive ability, the endo-
sperm mutation type (su1, sh2, or su1sh2) was assessed as 
a covariate in prediction models evaluating the marker 
datasets with three different levels of genome coverage. 
With the genome-wide marker dataset, the inclusion 
of the endosperm mutation type covariate improved 
predictive ability by five percentage points for both γT3 
and δT3, the only two compounds that had a significant 
association with SNPs within and nearby su1 and sh2 
(Supplemental Table S7). When the same covariate was 
included in prediction models with the pathway-level and 
tocochromanol QTL-targeted marker datasets, there were 
similarly improvements in accuracy for γT3 and δT3, but 
the increase in predictive abilities was higher and ranged 
from 11 to 18 percentage points across both marker sets. 
This allowed the predictive abilities of γT3 and δT3 with 
the pathway-level marker dataset to nearly equal that 
obtained with genome-wide markers when this covariate 
was not included. Conversely, the predictive abilities for 
the other three tocopherol compounds, which are synthe-
sized in the embryo, and αT3 were essentially unchanged 
across all three marker datasets when the covariate for 
endosperm mutation type was included. Taken together, 
these results suggest that capturing the genetic informa-
tion associated with su1 and sh2 is important to improv-
ing the predictive ability of γT3, δT3, and their related 
derivative traits when selecting in breeding populations 
that are segregating for both the su1 and sh2 endosperm 
mutations.

Discussion
Improving the nutritional quality of fresh sweet corn 
through genetic improvement offers an avenue to help 
address vitamin E insufficiencies where this vegetable is 
frequently consumed. Such biofortification efforts would 
be enhanced by association studies that identify the loci 
underlying phenotypic variation for tocochromanol lev-
els in sweet corn kernels. As a complement to GWAS for 
the genetic dissection of these nutritional kernel traits, 
the optimization of predictive abilities for genomic selec-
tion models with marker sets that are genome-wide or 
that more directly target genes controlling tocochro-
manol phenotypes would also provide insight into the 
genetic gains that could be expected under selection in a 
breeding program. In that light, we conducted a GWAS 
to identify the genetic controllers of natural variation 
for 20 tocochromanol kernel traits and, under different 
marker set scenarios, assessed the accuracy of genomic 
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prediction models that could be used for the biofortifica-
tion of sweet corn. This work represents the first GWAS 
conducted in a sweet corn association panel, the most 
extensive assessment of natural variation for tocochro-
manol levels in fresh kernels, and the first genomic pre-
diction analysis of tocochromanol traits in maize.

The extent of variation for α-, δ-, and γ- tocopher-
ols and tocotrienols in fresh kernels from an association 
panel of diverse sweet corn lines was evaluated. The 3.8- to 
47.8-fold range in variation, calculated as the maximum 
divided by the minimum BLUP value for each trait, 
revealed for these six tocochromanol compounds repre-
sents extensive phenotypic variability at the fresh kernel 
stage, with αT (the highest vitamin E activity compound) 
having a 14.3-fold range in variation. In contrast, there was 
a 30-fold higher range of variation for αT in physiologically 
mature dry kernels of temperate and tropical non-sweet 
corn lines comprising the Goodman–Buckler association 
panel (Lipka et al., 2013) relative to our sweet corn panel. 
The likely drivers explaining these differences are the 
higher levels of allelic diversity captured by the Goodman–
Buckler association panel (Flint-Garcia et al., 2005) and 
the continued accumulation of tocochromanols to higher 
levels in the kernel beyond the ~21 DAP analyzed in this 
study (Kurilich and Juvik, 1999; Xie et al., 2017), the time 
point when sweet corn is typically harvested for consump-
tion. Irrespective of these limitations, the observed wide 
range of phenotypic variation in the sweet corn association 
panel was found to be highly heritable ( 2

l̂h  = 0.68–0.89) 
and capture a more biologically relevant topmost RDA of 
4.4% for vitamin E (Supplemental Fig. S10).

Through a GWAS of the sweet corn association panel, 
significant associations for three core tocochromanol 
pathway genes (vte4, vte1, and hggt1) were identified at 
the genome-wide level, which are in agreement with 
GWAS results from prior studies of mature kernels in 
maize (Li et al., 2012; Lipka et al., 2013; Diepenbrock et 
al., 2017; Wang et al., 2018). The significant association 
between two nonindependent SNPs within vte4 and αT 
content confirms the critical role of this biosynthetic gene 
in compositional profiles for fresh sweet corn kernels. 
This association signal defined by two SNPs in complete 
LD was resolved to a single SNP selected by the MLMM, 
suggesting a lack of allelic heterogeneity, as was impli-
cated for vte4 in the Goodman–Buckler association panel 
(Lipka et al., 2013). However, this could be attributed 
to the relatively fewer number of scored SNPs and the 
expected lower haplotype diversity at vte4 in the sweet 
corn association panel. Evidence was found to support the 
hypothesis of a distant upstream regulatory element at 
vte4, with an association signal ~170 kb away from a puta-
tive regulatory element previously shown to be associated 
with αT levels in maize grain (Li et al., 2012).

In concordance with Lipka et al. (2013) and Diepen-
brock et al. (2017), moderately strong associations were 
identified between SNPs spanning a recombination-
ally suppressed pericentromeric region that encom-
passed vte1 and tocotrienol traits. In these two previous 

studies, the clear attribution of the association signal to 
vte1 was confounded by complex patterns of LD in the 
genomic interval. In our study, however, the optimal 
MLMM model was able to resolve the detected associa-
tion signal to within the vte1 gene for δT3/(γT3 + αT3). 
The enzyme encoded by vte1, tocopherol cyclase, con-
verts 2,3-dimethyl-5-geranylgeranylbenzoquinol and 
2-methyl-6-geranylgeranylbenzoquinol to γT3 and δT3, 
respectively, which is in agreement with the association 
of vte1 with δT3/(γT3 + αT3) and δT3/γT3 in the sweet 
corn association panel. Furthermore, vte1 is expressed 
at low levels in the tocotrienol-rich endosperm (Stelpflug 
et al., 2016) and therefore is more likely to be a limiting 
factor for tocotrienol than tocopherol biosynthesis (Lipka 
et al., 2013). Taken together, to date this is the strongest 
support that implicates vte1 as contributing to the natu-
ral variation of tocotrienols in kernels.

A second gene related to tocotrienol biosynthesis, 
hggt1, was shown to be associated with tocotrienol traits. 
The HGGT enzyme catalyzes the first committed step 
of tocotrienol synthesis and is expressed strongly in 
the endosperm (Stelpflug et al., 2016), the site of tocot-
rienol accumulation (Grams et al., 1970; Weber, 1987). 
Within this pericentromeric region on chromosome 9, 
the most significant SNP associated with γT3 was 138 
kb away from hggt1, which is within the range of physi-
cal distances for SNPs upstream of hggt1 that had a 
significant association with γT3 and total tocotrienols in 
maize grain through a pathway-level analysis (Lipka et 
al., 2013). The two significant SNP associations detected 
at 1 and 1.8 Mb upstream of hggt1 for total T and the 
total T/total T3 ratio, respectively, are most likely to 
have resulted from long-range LD patterns rather than 
very distant regulatory elements. In the US maize NAM 
panel, hggt1 was shown to explain the highest pheno-
typic variation (24.0–40.2%) for δT3, γT3, and total 
T3. Although it was not the most significant locus for 
tocotrienol-related traits in this study and that of Lipka 
et al. (2013), the difference is probably because these two 
mapping panels have weaker statistical power from their 
smaller sample size, rarer allele frequencies, and fewer 
scored SNP markers relative to the NAM panel.

In contrast to the GWAS of tocotrienols conducted 
by Lipka et al. (2013), which excluded the few sweet 
corn lines included in the Goodman–Buckler associa-
tion panel, two genes involved in kernel starch biosyn-
thesis (su1 and sh2) were found to be associated with 
tocotrienol traits in our study. Given that sh2 kernels 
(~80%) have a higher percentage of moisture relative to 
su1 kernels (~75%) arising from differences in sugar and 
water-soluble polysaccharide content at the fresh-eating 
stage (Creech, 1965; Soberalske and Andrew, 1978), it 
was posited that the differences in the percentage of 
moisture could explain the association of su1 and sh2 
with tocotrienols. However, the significant associations 
between these endosperm-expressed genes and the toco-
trienol-related traits still remained even after conduct-
ing a more stringent GWAS with a mixed linear model 
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that had a kinship matrix and the first four PCs derived 
from all 174,996 SNP markers plus fresh kernel weight 
as a covariate (results not shown). When we considered 
the JL-QTL mapping results of three tocotrienol-related 
traits (γT3, total T3, and total T + T3) for grain from the 
US maize NAM panel, only one of the two sweet corn 
families (‘B73 × P39’) that segregate for the su1 mutation 
had a significant allelic effect estimate for a JL-QTL with 
a support interval that included su1 (Diepenbrock et al., 
2017). However, this JL-QTL could not be resolved down 
to the gene level by GWAS in the NAM panel. Therefore, 
strong independent evidence is lacking for the implica-
tion of su1 in the genetic control of tocotrienol levels in 
maize grain. The role of sh2 in the regulation of tocotri-
enols, however, could not be assessed by Diepenbrock et 
al. (2017), because neither of the two sweet corn families 
segregated for the sh2 mutation.

Of the six measured tocochromanol compounds in 
kernels, only γT3 and δT3 were at significantly greater 
levels (P < 0.01) for sh2 and su1sh2 lines relative to su1 
lines (Table 2). This could result from the unintentional 
fixation of causal alleles associated with the increased 
levels of these two tocotrienols, which might have 
arisen early in the breeding process if only a limited 
number of highly related sh2 lines were used as donor 
parents (Tracy, 1997). Indeed, hggt1 (S9_92345469) and 
vte1 (S5_131738084) alleles that increased the level of 
γT3 were fixed in all sh2 and su1sh2 lines, as inferred 
by the peak SNPs, with the exception of one sh2 line 
that had the weaker hggt1 allele (Supplemental Table 
S9). The involvement of hggt1 and vte1 would directly 
influence γT3 levels, as HGGT1 condenses homogen-
tisic acid and GGDP to produce 2-methyl-6-geranyl-
geranylbenzoquinol, which, after being methylated to 
2,3-dimethyl-5-geranylgeranyl-1,4-benzoquinol by 
2-methyl-6-phytyl-1,4-benzoquinol/2-methyl-6-geranyl-
geranyl-1,4-benzoquinol methyltransferase (VTE3), is 
then converted to γT3 by VTE1 (Fig. 1). Given that hggt1 
and vte1 do not explain all of the variation between su1 
versus sh2 and su1sh2 for these two tocotrienols (Supple-
mental Table S8 and Supplemental Table S9), it is likely 
that one or more of the other nine genes identified to be 
underlying JL-QTL for γT3 and δT3 levels in maize grain 
(Diepenbrock et al., 2017) account for the missing herita-
bility. Further exploration to evaluate the genetic contri-
bution of these nine undetected genes and their variant 
allele frequencies within groups of su1, sh2, and su1sh2 
lines would be enhanced through the higher statistical 
power attainable with a larger, more densely genotyped 
sweet corn association panel.

The genes most strongly associated with both γT3 
and δT3 are the two endosperm-expressed genes, su1 and 
sh2. However, neither of these genes was associated with 
tocopherol (embryo) traits (Grams et al., 1970; Weber, 
1987). If either of these genes is responsible for the greater 
levels of γT3 and δT3 in kernels of sh2 and su1sh2 lines, 
it is most plausibly driven by the increased sugar con-
tent in the endosperm, especially that of the su1sh2 and 

sh2 genotypes that have two- to threefold and seven- to 
eightfold more sucrose at 20 DAP than su1 and dent corn 
genotypes, respectively (Creech, 1965). In leaf tissue from 
A. thaliana plants grown on media supplemented with 3% 
sucrose, Hsieh and Goodman (2005) observed moderate 
increases in the expression of MEP pathway genes, includ-
ing 1-deoxy-d-xylulose 5-phosphate synthase, which is a 
gene (dxs2) that underlies a major JL-QTL for levels of 
γT3, δT3 and total T3 (but not tocopherol traits) in grain 
from the US maize NAM panel (Diepenbrock et al., 2017). 
Therefore, we hypothesize that the increased sucrose con-
centration in kernels of su1sh2 and sh2 lines stimulates 
the synthesis of tocotrienols in the endosperm through 
upregulation of the MEP pathway that provides isopen-
tenyl pyrophosphate for biosynthesis of the tocotrienol 
tail groups. This could synergistically enhance tocotri-
enol production in the presence of the strongly expressed 
hggt1 allele that is essentially fixed in lines with the sh2 
mutation. Taken together, with the lack of evidence for an 
association between su1 and tocotrienols in the US maize 
NAM panel and the relatively modest accumulation of 
sucrose, γT3, and δT3 in kernels of su1 lines, sh2 becomes 
the most probable genetic contributor to tocotrienol levels 
through its production of high sucrose in the endosperm. 
This hypothesis would be further supported if the associa-
tion between su1 and tocotrienols is eventually found to 
be spurious because of the high interchromosome LD (r2 = 
0.61) between su1 and sh2.

Through the implementation of WGP via the GBLUP 
method, moderate (tocopherols) to moderately high 
(tocotrienols) predictive abilities were shown for toco-
chromanol phenotypes in the panel, suggesting that 
genomic selection could be used to improve genetic gain 
for tocochromanols and vitamin E in sweet corn breeding 
programs. The pathway-level and tocochromanol QTL-
targeted marker datasets were found to have lower aver-
age predictive abilities than those from WGP, although 
tocochromanol traits are mostly explained by several 
moderate- to large-effect loci in the NAM panel (Diepen-
brock et al., 2017). The most probable explanation for 
these lower predictive abilities is that the genotyped SNP 
markers (common variants) at the targeted loci were not 
in strong LD with causative variants. In support of this 
theory, the number of significantly associated markers 
at a genome-wide FDR of 5% from GWAS had a strong, 
positive correlation with the predictive abilities of toco-
chromanols. Additionally, 11 of the 14 causal loci control-
ling grain tocochromanols have significant allelic effect 
estimates in at least one of the two sweet corn families of 
the US maize NAM panel (Diepenbrock et al., 2017) but 
these would have escaped detection in models used for 
GWAS and WGP if the causal variants at these loci were 
rarer, weaker effects in the less densely genotyped, smaller 
sweet corn association panel. These findings are in con-
trast to the work of Owens et al. (2014), which showed 
that an eight gene QTL-targeted set is as effective as 
genome-wide markers for the prediction of the highly oli-
gogenic carotenoid grain traits in the Goodman–Buckler 



baseggio et al.	 15 of 17

association panel. However, four of these eight genes were 
detected via GWAS in the Goodman–Buckler associa-
tion panel, thus ensuring the capture of large-effect genes 
that are critical for modifying grain carotenoid composi-
tion in the prediction model. Conversely, only 2 of the 14 
causal genes underlying QTL associated with grain toco-
chromanols (Diepenbrock et al., 2017) were identified in 
the sweet corn association panel.

Conclusions
We found natural variation for αT (the tocochromanol 
with the highest vitamin E activity) in sweet corn kernels 
at the fresh-eating stage to be predominantly under the 
genetic control of vte4, while vte1 and hggt1 are involved 
in controlling the content and composition of tocot-
rienols. Of the two starch biosynthesis genes found to 
associate with tocotrienols, the strongest evidence exists 
for the involvement of sh2 rather than su1 in modifying 
tocotrienol levels. However, additional experiments are 
needed to develop and evaluate a set of near isogenic lines 
that capture the different alleles of su1 and sh2 in several 
genetic backgrounds to determine the contribution of 
these two genes, if any, to heritable differences in tocot-
rienol levels. The majority of lines with the sh2 mutation 
are fixed for alleles at vte4, vte1, and hggt1 that collectively 
increase the levels of αT and γT3. In light of this find-
ing, targeted resequencing and characterization of allelic 
variation at these three and the other undetected loci pre-
viously identified are needed to better assess if the extant 
sweet corn germplasm pool captures the most favorable 
variants that exist for maize as a species, especially given 
that sweet corn experienced a postdomestication genetic 
bottleneck and recent founder events (Tracy, 1997; Whitt 
et al., 2002). Whether it be through selection on existing 
or introgressed allelic variation in breeding programs, 
our work constitutes an important step for the necessary 
genomics-assisted breeding efforts to enhance vitamin E 
to a level that meets or exceeds an RDA of 4.4% for 100 g 
of fresh sweet corn kernels.

Supplemental Information
Supplemental Table S1:  Lambda values used in Box–

Cox transformation of 20 fresh kernel tocochromanol traits.
Supplemental Table S2: Transformed best linear unbi-

ased predictors of the 20 fresh kernel tocochromanol traits.
Supplemental Table S3: Back-transformed best linear 

unbiased predictors of the 20 fresh kernel tocochroma-
nol traits.

Supplemental Table S4: Comparison of genomic pre-
diction models for the presence or absence of two endo-
sperm mutations (su1 and sh2) using marker datasets with 
different levels of coverage.

Supplemental Table S5: Genomic information (Ref-
Gen_v2) for the 81 a priori candidate genes.

Supplemental Table S6: Genomic information (Ref-
Gen_v2) for the 14 a priori genes underlying joint-linkage 
quantitative trait loci associated with grain tocochromanol 
levels in the US maize nested association mapping panel.

Supplemental Table S7: Statistically significant results 
from a genome-wide association study of 20 fresh kernel 
tocochromanol traits.

Supplemental Table S8: Multi-locus mixed-model 
results from an analysis of tocochromanol traits for chro-
mosomes 3, 4, and 5 with and without endosperm muta-
tion type as a covariate.

Supplemental Table S9: Back-transformed effect esti-
mates for vte4, vte1, hggt1-related SNPs selected with an 
optimal multi-locus mixed-model.

Supplemental Table S10: Statistically significant results 
from a genome-wide association study of 20 fresh kernel 
tocochromanol traits when including endosperm mutation 
type as a covariate in the mixed linear model.

Supplemental Table S11: Statistically significant results 
from a genome-wide association study of 20 fresh kernel 
tocochromanol traits in sweet corn when using endosperm 
mutation type and the two SNPs selected by multi-locus 
mixed-models (S5_131738084 and S5_214707875) as 
covariates in the mixed linear model.

Supplemental Fig. S1: Sources of variation for toco-
chromanol traits in fresh sweet corn kernels.

Supplemental Fig. S2: Correlation matrix for back-
transformed BLUPs of the 20 tocochromanol fresh ker-
nel traits.

Supplemental Fig. S3: Linkage disequilibrium esti-
mates in the sweet corn diversity panel.

Supplemental Fig. S4: Genome-wide association study 
of 20 fresh kernel tocochromanol traits in sweet corn.

Supplemental Fig. S5: Genome-wide association study 
for the ratio of α-tocopherol to γ-tocopherol in fresh ker-
nels of sweet corn.

Supplemental Fig. S6: Genome-wide association study 
for the ratio of δ-tocotrienol to γ-tocotrienol in fresh ker-
nels of sweet corn.

Supplemental Fig. S7: Genome-wide association study 
for γ-tocotrienol content in fresh kernels of sweet corn.

Supplemental Fig. S8: Genome-wide association study 
for endosperm mutation type of physiologically mature 
sweet corn kernels.

Supplemental Fig. S9: Genome-wide association study 
of 20 fresh kernel tocochromanol traits in sweet corn with 
endosperm mutation type (su1, sh2, or su1sh2) included as 
a covariate.

Supplemental Fig. S10: Distribution of the percentage 
of the recommended daily allowance (RDA) for vitamin 
E provided by inbred lines from the sweet corn associa-
tion panel.
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