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Abstract

Despite being one of the most consumed vegetables in the United States, the elemental profile of sweet corn (Zea mays L.) is limited in its
dietary contributions. To address this through genetic improvement, a genome-wide association study was conducted for the concentra-
tions of 15 elements in fresh kernels of a sweet corn association panel. In concordance with mapping results from mature maize kernels, we
detected a probable pleiotropic association of zinc and iron concentrations with nicotianamine synthase5 (nas5), which purportedly enco-
des an enzyme involved in synthesis of the metal chelator nicotianamine. In addition, a pervasive association signal was identified for cad-
mium concentration within a recombination suppressed region on chromosome 2. The likely causal gene underlying this signal was heavy
metal ATPase3 (hma3), whose counterpart in rice, OsHMA3, mediates vacuolar sequestration of cadmium and zinc in roots, whereby regu-
lating zinc homeostasis and cadmium accumulation in grains. In our association panel, hma3 associated with cadmium but not zinc accumu-
lation in fresh kernels. This finding implies that selection for low cadmium will not affect zinc levels in fresh kernels. Although less resolved
association signals were detected for boron, nickel, and calcium, all 15 elements were shown to have moderate predictive abilities via
whole-genome prediction. Collectively, these results help enhance our genomics-assisted breeding efforts centered on improving the ele-
mental profile of fresh sweet corn kernels.
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Introduction
As with all multicellular organisms, the concentration and distri-
bution of elements in tissues and organs influence growth and de-
velopment over the plant life cycle. At least 16 elements (boron,
calcium, carbon, chlorine, copper, hydrogen, iron, magnesium,
manganese, molybdenum, nitrogen, oxygen, phosphorus, potas-
sium, sulfur, and zinc) are considered essential for higher plant
species, with an additional four elements (cobalt, silicon, nickel,
and sodium) essential for a subset of higher plants (Mengel and
Kirkby 2001). In plants, the need for and concentration of macro-
elements (carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur,
potassium, calcium, magnesium) (Hawkesford et al. 2012) are

relatively greater than for microelements (iron, manganese, cop-

per, zinc, nickel, molybdenum, boron, chlorine, and cobalt)

(Broadley et al. 2012). In addition, nonessential heavy metals such

as cadmium, chromium, and lead that lack involvement in normal

physiological functions can accumulate to toxic concentrations in

plants, penetrating the food chain and posing a threat to human

health (Singh et al. 2016).
Not unlike plants, humans can suffer a range of adverse

health effects from the excess or deficiency of essential and non-

essential elements. Of all the micronutrients, deficiency is most

prevalent for iron, with more than two billion people affected

worldwide (Viteri 1998). Of similar scale, nearly two billion people
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are estimated to suffer from dietary zinc deficiency throughout
developing nations (Prasad 2014). Given that metal chelating sub-
stances such as phytate in cereal grains bind zinc and iron and
inhibit their absorption, zinc and iron deficiencies resulting from
low bioavailability could coincide (Sandstead and Smith 1996;
Lönnerdal 2000). Although severe dietary micronutrient defi-
ciency is far less prevalent in developed nations, approximately
10 million people are iron deficient in the U.S. (Miller 2013). In the
U.S., the average daily intake of iron by most premenopausal
(12 mg d-1) and pregnant (15 mg d-1) women is 6 and 12 mg d-1

less than its recommended daily allowance (RDA), respectively
(Institute of Medicine 2001; Linus Pauling Institute 2016). In addi-
tion, the zinc RDA for adult women and men is 11 mg d-1 and
8 mg d-1, with elderly at higher risk for mild zinc deficiency
(Mocchegiani et al. 2013; Linus Pauling Institute 2019).

Crop biofortification via genomics-assisted breeding and
genetic engineering has emerged as an attractive approach for
nutritional enhancement of crops and the generation of new vari-
eties with a high density of iron and zinc in edible plant tissues
(Murgia et al. 2012; Bhullar and Gruissem 2013; Hirschi 2020). It is
increasingly recognized that plant membrane transporters and
metal chelators are among the key targets for increasing mineral
nutrient density in plant tissues (Waters and Sankaran 2011;
Schroeder et al. 2013). However, in many cases, transporters that
facilitate the accumulation of iron and zinc are multispecific and
can mediate the uptake and internal transport of nonessential
and potentially highly toxic heavy metals including cadmium
(Waters and Sankaran 2011; Schroeder et al. 2013; Khan et al.
2014). Therefore, efforts to increase the concentration of iron and
zinc in grains of cereals could also increase the concentration of
cadmium. This poses a serious threat to food security, especially
if crops are grown on soils either contaminated with cadmium or
low in microelements, particularly iron (Waters and Sankaran
2011; Schroeder et al. 2013; Khan et al. 2014).

Vegetative and seed tissues of fruits and vegetables are impor-
tant dietary sources of essential and nonessential elements for
humans to meet their daily nutrient needs. Given that sweet corn
is the third most consumed vegetable in the U.S. (USDA-NASS
2018), the elemental profile of fresh sweet corn kernels is an im-
portant consideration for human health and nutrition. Although
not a major contribution to the RDA of iron and zinc, the con-
sumption of 100 g of uncooked, yellow sweet corn (medium-sized
ear) provides 0.52 mg of iron and 0.46 mg of zinc (USDA-ARS
2019), but the bioavailable amount is expected to be no more
than a quarter of the total of each element (Bouis and Welch
2010). Therefore, there exists a tremendous opportunity to im-
prove the elemental profile of fresh sweet corn kernels through
genomics-assisted breeding, but this first requires an under-
standing of the phenotypic variability and genetic control of zinc,
iron, and other elements. Considerable heritable variation exists
for elemental concentrations in physiologically mature grain of
diverse maize panels (Ziegler et al. 2017; Wu et al. 2021), but a
comparable level of genetic understanding is severely lacking for
immature kernels (fresh-eating stage) of diverse sweet corn
germplasm.

Complex physiological and genetic networks coordinate ele-
mental uptake, transport, and accumulation in plants, and these
processes are responsive to the environment in which plants are
grown (Reviewed in Baxter 2009). In the genomes of Arabidopsis,
maize, rice, and other plant species, gene families have been
identified for metal transporters and chelators including but not
limited to HEAVY-METAL ATPASE (HMA), OLIGOPEPTIDE
TRANSPORTERS (OPTs), and their subfamily of YELLOW STRIPE-

LIKE (YSL), ZINC-REGULATED TRANSPORTER (ZRT)/IRON-
REGULATED TRANSPORTER (IRT)-LIKE PROTEIN (ZIP), and
NICOTIANAMINE SYNTHASE (NAS) (Whitt et al. 2020). As it
relates to maize, yellow stripe1 (ys1) and ys3 encode proteins that
have been functionally shown to transport iron when associated
with the strong metal-ligand, nicotianamine—synthesized from
S-adenosyl-methionine by NAS enzymes—or its derivative
phytosiderophores such as mugineic acid and deoxymugenic acid
(Von Wiren et al. 1994; Chan-Rodriguez and Walker 2018), whereas
the proteins encoded by ysl2 and zip5 have been functionally impli-
cated in the accumulation of zinc and iron in grain (Li et al. 2019;
Zang et al. 2020). Despite these advancements, the vast majority of
metal transporters and chelators in the maize genome have not
been deeply characterized at the functional level, thus a wide gap
in the knowledge base remains for the key gene family members
controlling the content and composition of elements in maize tis-
sues and organs.

Explaining and predicting the quantitative variation of pheno-
types is a major challenge in crop plants, but there has been no-
table recent progress for maize grain elemental phenotypes
(Ziegler et al. 2017; Hindu et al. 2018; Wu et al. 2021). In the U.S.
maize nested association mapping (NAM) panel, joint-linkage
analysis and genome-wide association studies (GWAS) were used
to identify six strong candidate genes for the concentrations of
manganese, molybdenum, phosphorus, or rubidium in physiolog-
ically mature grain (Ziegler et al. 2017). Through the implementa-
tion of GWAS in the maize Ames panel, Wu et al. (2021) resolved
several loci previously identified to control variation for copper,
iron, manganese, molybdenum, and/or zinc in mature grain from
the U.S. NAM panel, which resulted in the identification of two
metal chelator and five metal transporter candidate genes. In ad-
dition, the authors detected novel candidate gene loci for boron
and nickel grain concentrations. Whole-genome prediction
(WGP) models have been found to be moderately predictive of el-
emental concentrations in mature maize grain of tropical popu-
lations (zinc) (Guo et al. 2020; Mageto et al. 2020) and the Ames
panel (boron, calcium, copper, iron, potassium, magnesium,
manganese, molybdenum, nickel, phosphorus, and zinc) (Wu
et al. 2021). Notwithstanding this progress with mature grain, the
genotype-phenotype map of elemental concentrations in fresh
sweet corn kernels is completely nonexistent, thus there exists
tremendous opportunities for studying the quantitative genetics
of these nutritionally relevant phenotypes.

In this study, we used a sweet corn association panel for the
genetic dissection and prediction of quantitative variation of 15
elements in fresh sweet corn kernels. The three major objectives
of our study were to (i) evaluate variability and heritability of ele-
mental fresh kernel phenotypes within and across field locations,
(ii) employ GWAS to identify candidate genes associated with the
levels of elements in fresh kernels, and (iii) assess the predictive
abilities of WGP models as an evaluation of the potential that ge-
nomic selection has for the genetic improvement of elemental
fresh kernel phenotypes important to human nutrition and
health.

Materials and methods
Plant materials and experimental design
In two consecutive field seasons (2014 and 2015), a sweet corn as-
sociation panel of 430 inbred lines representing the genetic diver-
sity of temperate U.S. breeding programs (Baseggio et al. 2019)
was evaluated at Cornell University’s Musgrave Research Farm in
Aurora, NY, on a Lima silt loam (fine-loamy, mixed, semiactive,
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mesic Oxyaquic Hapludalfs) and University of Wisconsin’s West
Madison Research Station in Verona, WI, on a Plano silt loam
(fine-silty, mixed, superactive, mesic Typic Argiudolls). The panel
consists of sugary1 (su1), sugary1: sugary enhancer1 (su1se1),
shrunken2 (sh2), sugary1: shrunken2 (su1sh2), brittle2 (bt2), and amy-
lose-extender: dull: waxy (aeduwx) lines that are homozygous for
endosperm mutations that cause deficiencies in starch biosyn-
thesis. In addition, there were 20 nonsweet corn inbred lines and
four repeated check sweet corn inbred lines included in the ex-
periment. In each of the four environments (location � year com-
bination), the experiment was arranged as an augmented
incomplete block design grown as a single replicate as previously
described by Baseggio et al. (2019). Briefly, the lines were sepa-
rated into three sets according to their plant height, with each set
having incomplete blocks. Each incomplete block of 20 experi-
mental lines was augmented with the random placement of two
height-specific check lines (We05407 and W5579, W5579 and
Ia5125, or Ia5125 and IL125b). In both field locations, experimen-
tal units were one-row plots of different lengths. Plots were
3.05 m long in NY and 3.50 m long in WI. Both locations had an
inter-row spacing of 0.76 m, with a 0.91 m alley at the end of each
plot. In NY, 25 kernels were planted per plot and thinned to 12
plants per plot. In WI, 12 kernels were planted in each plot, but
plots were not thinned.

In all environments, multiple plants per plot were selfed polli-
nated, with two selfed ears collected by hand from each harvest-
able plot at 400 growing degree days after pollination (i.e.,
immature kernel stage at approximately 21 days after pollina-
tion) as earlier described (Baseggio et al. 2019). Immediately upon
fresh harvest, the entirety of each dehusked ear was directly
frozen in liquid nitrogen, followed by hand shelling of frozen
kernels. To generate a representative composite kernel sample
for each harvested plot, frozen kernels were equally sampled at
random from both ears, bulked, and stored in 15 ml Falcon tubes
at �80

�
C until lyophilization. A combined set of 1524 plot sam-

ples from across all environments, with each sample consisting
of three lyophilized kernels, was shipped to the Donald Danforth
Plant Science Center (St. Louis, MO, USA) for elemental analysis.

Phenotypic data analysis
For each plot sample, the determination of elemental concen-
tration by an inductively coupled plasma mass spectrometer
(ICP-MS) was conducted separately for each of the three lyophi-
lized kernels as previously described in Baxter et al. (2014). In
short, each individual unground kernel was robotically weighed,
digested in concentrated nitric acid, and measured for concen-
trations of aluminum, arsenic, boron, cadmium, calcium, co-
balt, copper, iron, magnesium, manganese, molybdenum,
nickel, phosphorus, potassium, rubidium, selenium, sodium,
strontium, sulfur, and zinc with a PerkinElmer NexION 350 D
ICP-MS. Of these 20 elements, aluminum, arsenic, cobalt, sele-
nium, and sodium were not further considered because their
measured concentrations were at trace levels, vulnerable to
contamination in the course of sample processing, and/or sensi-
tive to interference from other sample matrix constituents
(Ziegler et al. 2013). To limit the influence of extreme analytical
outliers that could negatively affect the accurate estimation of
variance components when initially fitting a mixed linear
model to the raw data, the method of Davies and Gather (1993)
was implemented similarly to its use in Baxter et al. (2014) to re-
move raw concentration values with greater than a conserva-
tive threshold of 15 median absolute deviations from the
median concentration for a given element within each

environment. Also, if less than 1% of the values for a given ele-
ment were negative, these negative values were set to missing.

The preliminarily processed raw ICP-MS dataset was more ro-

bustly screened for significant outliers by fitting a mixed linear
model that allowed for genetic effects to be separately estimated

from field design effects, following the procedure described in

Wolfinger et al. (1997). The fitted mixed linear model was similar
to that used by Baseggio et al. (2019) for the same experimental

field design, with the notable exception that the model used in
this study included a term to estimate within-plot kernel sample

variance. This allowed for the removal of individual outlier meas-
urements. For each elemental phenotype, the full model was fit-

ted in ASReml-R version 3.0 (Gilmour et al. 2009) across locations
(all four environments) or for each location separately (two envi-

ronments, NY; or two environments, WI) as follows:

Yijklmnopq ¼ lþ checki þ envj þ set envð Þjk þ block set� envð Þjkl

þ genotypem þ genotype� envð Þjm þ ICP-MS:runn

þ sampleo þ row envð Þjp þ col envð Þjq þ eijklmnopq [1]

in which Yijklmnopq is an individual phenotypic observation, l is the
grand mean, checki is the fixed effect for the ith check, envj is the

effect of the jth environment, set(env)jk is the effect of the kth set
within the jth environment, block(set � env)jkl is the effect of the

lth incomplete block within the kth set within the jth environ-
ment, genotypem is the effect of the mth experimental genotype

(noncheck line), (genotype � env)jm is the effect of the interaction

between the mth genotype and jth environment, ICP-MS.runn is
the laboratory effect of the nth ICP-MS run, sampleo is the oth ker-

nel sample, row(env)jp is the effect of the pth plot grid row within
the jth environment, col(env)jq is the effect of the qth plot grid col-

umn within the jth environment, and eijklmnopq is the heteroge-
neous residual error effect within each environment with a first-

order autoregressive correlation structure among plot residuals
in the row and column directions. Except for the grand mean and

check term, all terms were modeled as random effects. The

Kenward-Roger approximation (Kenward and Roger 1997) was
used to calculate degrees of freedom. Studentized deleted resid-

uals (Neter et al. 1996) obtained from these mixed linear models
were used to detect significant outliers for each phenotype after a

Bonferroni correction (a¼ 0.05).
To generate the best linear unbiased predictor (BLUP) values

for each elemental phenotype, an iterative mixed linear model

fitting procedure was conducted on the outlier-screened pheno-

typic dataset in ASReml-R version 3.0 (Gilmour et al. 2009) with
the full model across locations or for each location separately.

Model terms fitted as random effects including the autoregres-
sive correlations were tested with likelihood ratio tests (Littell

et al. 2006), followed by the removal of terms from the model that
were not significant at a¼ 0.05. The significance of main random

effects and variance component estimates are reported in
Supplementary Table S1. In addition, the first-order autoregres-

sive correlation structure was statistically significant for all phe-

notypes. For each elemental phenotype, the final, best-fitted
model was used to generate a BLUP for each inbred line. The gen-

erated BLUP values were filtered to remove nonsweet corn lines,
as well as sweet corn lines with the infrequent aeduwx or bt2 en-

dosperm mutations and those without available SNP marker
data. This resulted in 401 sweet corn lines with more prevalent

endosperm mutations [su1, su1se1 (classified as su1 for this study
due to lack of informative marker genotypes), sh2, and su1sh2]
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that had BLUP values for elemental phenotypes across and

within locations.
With variance component estimates from each best fitted

model, heritability on a line-mean basis was calculated for each

elemental phenotype across locations and separately for each lo-

cation as previously described (Lynch and Walsh 1998; Holland

et al. 2003; Hung et al. 2012). Pearson’s correlation coefficient (r)

was used to assess the degree of association between the BLUP

values of paired phenotypes. Pairwise correlations were calcu-

lated, and their significance tested at a¼ 0.05 with the method

“pearson” from the function “cor.test” in R version 3.6.1 (R Core

Team 2019).

SNP marker genotyping
The sweet corn inbred association panel was sequenced via the

genotyping-by-sequencing (GBS) procedure of Elshire et al. (2011)

with ApeKI at the Cornell Biotechnology Resource Center (Cornell

University, Ithaca, NY, USA) as previously described (Baseggio

et al. 2019). The procedure of Baseggio et al. (2020) for SNP calling,

filtering, and imputing missing genotypes was used to construct

a SNP marker dataset for the genetic dissection and prediction of

fresh kernel elemental phenotypes. In brief, the raw GBS se-

quencing data from Baseggio et al. (2019) was processed through

the production pipeline in TASSEL 5 GBSv1 with the ZeaGBSv2.7

Production TagsOnPhysicalMap file to call SNPs at 955,690 loci in

B73 RefGen_v2 coordinates (Glaubitz et al. 2014). These raw SNP

genotype calls were merged with those of 19 sweet corn inbred

lines from Romay et al. (2013) that were not included in the

Baseggio et al. (2019) GBS dataset, allowing for the assemblage of

raw SNP calls for all 401 sweet corn inbred lines with BLUP

values.
The combined raw dataset was initially filtered by keeping

only biallelic SNPs with a call rate >10% and eliminating single-

ton (heterozygous site) and doubleton (homozygous site) SNPs

that scored a minor allele in only a single individual. Given the

potential to have resulted from paralogous alignments, we set

heterozygous genotype calls with an allele balance score (lowest

allele read depth/total read depth) <0.3 to missing. If multiple

GBS samples existed for an inbred line, SNP genotype calls from

samples with the same accession number/identifier were merged

and discordant genotype calls set to missing if identical-by-state

(IBS) values for all within-line sample comparisons were >0.99,

following the conservative IBS threshold set by Romay et al.

(2013). A single GBS sample with the highest SNP call rate was

chosen to represent an inbred line if all pairwise IBS values were

less than 0.99.
The FILLIN haplotype-based imputation strategy of Swarts

et al. (2014) was used to impute missing SNP genotypes to near

completeness based on a set of maize haplotype donors with a

window size of 4 kb. To improve the quality of the imputed data-

set, we filtered SNPs in TASSEL 5 version 20190321 to remove

those with a call rate <70% (residual missing genotype data are

expected for the haplotype-based imputation method of FILLIN;

Swarts et al., 2014), a minor allele frequency <5%, heterozygosity

>10%, coefficient of panmixia <80%, or a mean read depth >15.

To uplift the genome coordinates of retained SNPs to B73 v4, the

Vmatch software (Kurtz 2003) was used to align the 101 bp con-

text sequence of each SNP to the B73 RefGen_v4 reference ge-

nome, resulting in 147,762 high-quality SNP markers scored on

the 401 sweet corn inbred lines.

Genome-wide association study
A GWAS was conducted across and within locations to identify
SNP markers significantly associated with each elemental pheno-
type following the methods of Baseggio et al. (2020) with minor
modifications. In short, the Box-Cox power transformation (Box
and Cox 1964) was used with an intercept-only model to choose
the optimal value of convenient lambda (�2 to þ2, 0.5 incre-
ments) (Supplementary Table S2) for transforming the BLUP val-
ues of each elemental phenotype to lessen heteroscedasticity
and nonnormality of the residuals with the MASS package in R
version 3.6.1 (R Core Team 2019). For each elemental phenotype,
a mixed linear model (Yu et al. 2006; Zhang et al. 2010) that
accounted for population structure and unequal relatedness with
principal components (PCs) and a genomic relationship matrix
(GRM; kinship) was used to test for an association between each
of the 147,762 SNPs and transformed BLUP values in GEMMA
software version 0.97 (Zhou and Stephens 2014). In the R package
GAPIT version 2017.08.18 (Lipka et al. 2012), 10,773 unimputed ge-
nome-wide SNPs (call rate >90%, MAF >5%, heterozygosity
<10%, coefficient of panmixia >80%, and mean read depth <15)
subsampled from the complete marker dataset were used to cal-
culate PCs with the prcomp function and the kinship matrix with
VanRaden’s method 1 (VanRaden 2008). The conservative impu-
tation of residual missing SNP genotypes as heterozygous in both
marker datasets was conducted in GAPIT.

The Bayesian information criterion (BIC) (Schwarz 1978) was
used to ascertain the optimal number of PCs to incorporate in the
mixed linear model. Given that the predominant accumulation of
some elements in the endosperm (Lombi et al. 2009, 2011;
Pongrac et al. 2013; Baxter et al. 2014; Cheah et al. 2019) could po-
tentially lead to likely spurious associations with su1 and sh2 as
shown for tocotrienols and certain carotenoids (Baseggio et al.
2019, 2020), endosperm mutation type (su1, sh2, or su1sh2) was
also tested with the BIC for inclusion as a covariate in the model.
Of the 401 inbred lines, 384 lines had endosperm mutation type
scores available from Baseggio et al. (2019), whereas endosperm
mutation type for each of the remaining 17 lines without visual
scores was predicted with the identical optimal marker-based
classification models and 1000 kb marker datasets for the su1
and sh2 loci from Baseggio et al. (2019).

To approximate the amount of phenotypic variation explained
by a significantly associated SNP, we calculated the difference be-
tween the likelihood-ratio-based R2 statistic (R2

LR) of Sun et al.
(2010) from a mixed linear model with or without the given SNP,
following Baseggio et al. (2020). The false discovery rate (FDR) was
controlled at 5% by adjusting the P-values (Wald test) of SNPs
tested in GEMMA using the Benjamini–Hochberg multiple test
correction (Benjamini and Hochberg 1995) with the “p.adjust”
function in R version 3.6.1 (R Core Team 2019). Given the large
variance in the estimated distance to which median genome-
wide linkage disequilibrium (LD) decays to background levels
(r2 < 0.1 by �12 kb) in this association panel (Baseggio et al. 2019)
and to account for the possibility of distant cis-regulatory ele-
ments (Ricci et al. 2019), candidate gene searches were limited to
6 250 kb (median r2 � 0.05) of the physical position of SNP
markers significantly associated with an elemental phenotype.
For each most plausible candidate gene, we used BLASTP to iden-
tify the top three unique best hits (E-values < 1) in Arabidopsis
(Columbia-0 ecotype) and rice (Oryza sativa L. ssp. Japonica cv.
“Nipponbare”) using default parameters at the TAIR (https://
www.arabidopsis.org) and RAP-DB (https://rapdb.dna.affrc.go.jp)
databases, respectively. The across-location (All Locs: New York,

4 | G3, 2021, Vol. 11, No. 8

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/8/jkab186/6287658 by guest on 06 D

ecem
ber 2021

https://www.arabidopsis.org
https://www.arabidopsis.org
https://rapdb.dna.affrc.go.jp


Florida, North Carolina, and Puerto Rico) results from joint-
linkage analysis and GWAS of grain elemental phenotypes in
the U.S. NAM panel (Ziegler et al. 2017) were integrated with
the physical (bp) positions of GWAS signals from our study in
B73 RefGen_AGPv4 coordinates following the approach of Wu
et al. (2021).

The multi-locus mixed-model (MLMM) approach of Segura
et al. (2012) that sequentially adds significant markers as covari-
ates in the model was used to better clarify significant associa-
tion signals with underlying large-effect loci at the level of an
individual chromosome as previously described (Lipka et al.
2013). The optimal model was selected with the extended BIC
(Chen and Chen 2008). To further assess the extent of statistical
control for large-effect loci, GWAS was reconducted by including
MLMM-selected SNPs as fixed effects (covariates) in mixed linear
models fitted in GEMMA.

Linkage disequilibrium
The local patterns of LD surrounding significantly associated loci
were investigated by estimating pairwise LD between SNPs with
the squared allele-frequency correlation (r2) method of Hill and
Weir (1988) in TASSEL 5 version 20190627 (Bradbury et al. 2007).
The marker dataset used for estimation of LD consisted of the
147,762 SNPs without imputation of the post-FILLIN residual
missing SNP genotypes to heterozygotes.

Whole-genome prediction
A univariate genomic best linear unbiased prediction (GBLUP)
model (Bradbury et al. 2007; VanRaden 2008) was used to evaluate
WGP on the transformed across-location BLUP values of the 15 el-
emental phenotypes as previously described by Baseggio et al.
(2020). In short, the 401 line x 147,762 SNP genotype matrix with
post-FILLIN missing data imputed as a heterozygous genotype
was used to construct a GRM with method 1 from VanRaden
(2008) in GAPIT version 2017.08.18 (Lipka et al. 2012). Next, the
constructed GRM was modeled as a random effect to predict each
individual elemental phenotype with the function “emmreml” in
version 3.1 of the R package EMMREML (Akdemir and Okeke
2015). Through the implementation of a fivefold cross-validation
scheme conducted 50 times for each elemental phenotype, the
predictive ability of a phenotype was calculated as the mean
Pearson’s correlation between transformed BLUP (observed) and
genomic estimated breeding values (predicted). Each fold was
representative of genotype frequencies for endosperm mutants
(su1, sh2, and su1sh2) observed in the whole association popula-
tion. Endosperm mutation type (su1, sh2, or su1sh2) was also
evaluated as a covariate in prediction models, with the same
cross-validation folds used across models with or without the
covariate for endosperm mutation type.

Data availability
All raw GBS sequencing data are available from the National
Center of Biotechnology Information Sequence Read Archive under
accession number SRP154923 and in BioProject under accession
PRJNA482446. The ZeaGBSv2.7 Production TagsOnPhysicalMap file
(AllZeaGBSv2.7_ProdTOPM_20130605.topm.h5) for calling SNPs,
the raw SNP genotype data in B73 AGPv2 coordinates
(ZeaGBSv27_publicSamples_rawGenos_AGPv2-150114.h5) for the
19 sweet corn lines of Romay et al. (2013), and the maize haplotype
donor file (AllZeaGBSv2.7impV5_AnonDonors4k.tar.gz) for imput-
ing missing genotypes are on CyVerse (https://datacommons.
cyverse.org/browse/iplant/home/shared/panzea/genotypes/GBS/
v27). The BLUP values of the 15 elemental phenotypes and the

FILLIN imputed SNP genotype calls in B73 AGPv4 coordinates
for the 401 inbred lines are available at CyVerse: (https://data
commons.cyverse.org/browse/iplant/home/shared/GoreLab/
dataFromPubs/Baseggio_SweetcornElement_2021). All supple-
mentary materials are available at figshare: https://doi.org/10.
25387/g3.14633028. Except for the University of Wisconsin
germplasm, all inbred lines included in the sweet corn associ-
ation panel are in the public domain. A material transfer
agreement is required to obtain some of the Wisconsin lines.

Results
Phenotypic variation
The extent of phenotypic variation for 15 elements in fresh ker-
nels as quantified by ICP-MS was evaluated in an association
panel of 401 sweet corn inbred lines that was grown in two field
locations (Verona, WI; and Aurora, NY) in 2014 and 2015. Of the
five macroelements studied, potassium, phosphorus, sulfur, and
magnesium had average concentrations greater than 1000 lg g�1,
whereas calcium had an average concentration of nearly 60 lg
g�1 (Table 1). Average concentrations ranged from 0.012 (cad-
mium) to 24.52 (zinc) lg g�1 for the 10 microelements. Even
though cadmium had the lowest mean concentration, it had a
12.11-fold range in variation (maximum BLUP value divided by
the minimum BLUP value), whereas the other 14 elements cov-
ered a 1.34- to 3.66-fold range in variation. When separating in-
bred lines according to their endosperm mutation type (Table 2),
copper, iron, manganese, and potassium were found to be at sig-
nificantly (P< 0.001) greater concentrations in the sh2 (n¼ 78)
group relative to the su1 (n¼ 301) group.

Implying common genetic control (Baxter 2015), shared chem-
ical and physiological properties (Marschner 2011), or storage
with phytic acid (Maathuis 2009), element pairs with strong
positive correlations (r> 0.50; P< 0.01) across locations
(Supplementary Figure S1) were as follows: strontium/calcium,
magnesium/phosphorus, zinc/iron, and phosphorus/zinc.
Suggestive of a distinct genetic architecture, molybdenum was
the element most weakly correlated with other elements across
locations (Supplementary Figure S1), having a significant but

Table 1 Means and ranges for untransformed best linear
unbiased predictors (BLUPs) of 15 fresh kernel elemental
phenotypes evaluated in the sweet corn association panel and
estimated heritability (ĥ

2

l ) on a line-mean basis across two years
and two locations

BLUPs

Trait Lines Mean SDa Range ĥl
2

–––––––– lg g-1 dry weight –––––––
Boron 399 1.89 0.12 1.62–2.35 0.15
Cadmium 401 0.012 0.006 0.003–0.041 0.83
Calcium 392 57.91 10.76 34.36–106.08 0.48
Copper 401 3.25 0.76 1.61–5.90 0.81
Iron 401 18.55 2.08 13.66–28.11 0.64
Magnesium 401 1268.23 71.83 1,088.97–1,574.82 0.64
Manganese 401 8.52 1.21 5.33–13.13 0.86
Molybdenum 400 0.301 0.040 0.209–0.438 0.88
Nickel 401 0.161 0.032 0.096–0.312 0.64
Phosphorus 401 3,186.06 165.14 2,713.77–3,639.37 0.76
Potassium 401 8,089.79 473.62 6,558.37–9,765.09 0.76
Rubidium 401 2.72 0.25 2.22–3.72 0.58
Strontium 401 0.273 0.044 0.177–0.503 0.60
Sulfur 401 1,451.63 73.60 1,258.22–1,712.46 0.40
Zinc 401 24.52 2.26 18.58–32.10 0.75

a Standard deviation of the BLUPs.
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very weak positive correlation (r¼ 0.12; P¼ 0.02) with zinc alone.

Apart from boron (ĥ
2

l ¼ 0.15) that can have elevated background

levels from the use of glass (sodium borosilicate) tubes for chemi-

cal digestion (Baxter et al. 2014), the across-location heritability

estimates (Table 1) for the elemental phenotypes were 0.40 (sul-

fur) and larger. The G�E interaction term was only significant

for boron, copper, iron, magnesium, and rubidium, whereas the

genotype term was significant for all 15 elements

(Supplementary Figure S2 and Table S1).
When investigating phenotypic variation between locations,

we found that only the average concentration of sulfur was not

significantly different between locations (Supplementary Figure

S3). Indicative of phenotypes with a range of responsiveness to

the environment, the correlation (r) of elemental trait BLUPs be-

tween locations ranged from 0.08 (boron) to 0.68 (copper), with

an average correlation of 0.42 (Supplementary Figure S4).

Despite the mostly moderate correlations between locations,

within-location heritability estimates (Supplementary Table S3)

were comparable to those estimated across locations (Table 1)

and strongly correlated (r¼ 0.81) between the NY and WI loca-

tions. Altogether, our findings suggest that there is value in

exploring the genetic dissection of elemental fresh kernel phe-

notypes across- and within-locations.

Genome-wide association study
We investigated the genetic basis of natural variation for the con-

centration of 15 elements in fresh kernels from the sweet corn as-

sociation panel of 401 inbred lines that had been evaluated in

four environments (2 years �two locations) and scored with

147,762 genome-wide SNP markers. Through an across-location

GWAS conducted with a unified mixed linear model that

accounted for population structure, relatedness, and endosperm

mutation type, 220 unique SNPs were found to associate with one

of three elements (cadmium, zinc, or boron) at a genome-wide

FDR of 5% (Supplementary Table S4). Significant association sig-

nals were only found on chromosomes 1 (boron), 2 (cadmium),

and 7 (zinc), with the exception of a single SNP associated with
cadmium on chromosome 8 (Supplementary Figure S5).

The strongest association signal was identified for the concen-
tration of cadmium, consisting of 191 significant SNPs that
covered a 36.03-Mb interval within a long-range LD region of
chromosome 2 (Figure 1A). The peak SNP (S2_157751802; P-value
1.53��1023; 162,398,589 bp) for this complex association signal
(Supplementary Table S4), which explained 18% of the pheno-
typic variance for cadmium, was positioned within the open
reading frame (ORF) of a gene (Zm00001d005174) that codes for a
protein that belongs to the superfamily of uridine diphosphate-
glycosyltransferases (www.maizegdb.org). However, this and
other candidate genes within 250 kb of the peak SNP (www.mai
zegdb.org) were considered to unlikely be involved in cadmium
accumulation. Given the extensive LD within this recombination
suppressed region (Gore et al. 2009; Rodgers-Melnick et al. 2016),

Table 2 Estimated effects of endosperm mutation type from
untransformed best linear unbiased predictors of 15 fresh kernel
elemental phenotypes across 2 years and two locations

Trait su1a sh2 su1sh2 P-valueb

–––––––––– lg g-1 dry weight ––––––––––
Boron 1.89 1.88 1.93 0.147
Cadmium 0.011A 0.013A 0.013A 0.013
Calcium 57.79 57.05 62.48 0.105
Copper 3.12B 3.57A 3.93A <0.001
Iron 18.31B 19.16A 19.68A <0.001
Magnesium 1262.99B 1275.52AB 1314.02A 0.003
Manganese 8.39B 8.77A 9.44A <0.001
Molybdenum 0.301 0.302 0.294 0.732
Nickel 0.158A 0.166A 0.173A 0.035
Phosphorus 3173.18B 3206.30AB 3290.45A 0.003
Potassium 8027.32C 8216.81B 8494.14A <0.001
Rubidium 2.72 2.72 2.72 0.999
Strontium 0.271B 0.274B 0.300A 0.010
Sulfur 1444.09B 1462.47B 1516.39A <0.001
Zinc 24.43 24.64 25.24 0.237

a Sweet corn lines grouped by endosperm mutation type having labels with
the same letter are not significantly different according to the Tukey-Kramer
honest significant difference test (P<0.05). The test was only performed for
traits that had a significant F-test.

b P-value from one-way analysis of variance (ANOVA) F-test for the
endosperm mutation type effect. Bolded P-value indicates a statistically
significant difference between two or more endosperm mutation type groups
(P<0.05).

Figure 1 Genome-wide association study for cadmium concentration in
fresh kernels of sweet corn. (A) Scatter plot of association results from a
mixed model analysis and linkage disequilibrium (LD) estimates (r2). The
vertical lines are –log10 P-values of single nucleotide polymorphisms
(SNPs), with the blue color representing SNPs that are statistically
significant at a 5% false discovery rate (FDR). Triangles are the r2 values
of each SNP relative to the peak SNP (indicated in red) at 162,398,589 bp
(B73 RefGen_v4) on chromosome 2. The red horizontal dashed line
indicates the –log10 P-value of the least statistically significant SNP at a
5% FDR. The black vertical dashed lines indicate the genomic positions
of the heavy metal ATPase4 (hma4; Zm00001d005189; 163,016,710–
163,020,248 bp) and heavy metal ATPase3 (hma3; Zm00001d005190;
163,038,225–163,041,426 bp) genes. These two genes are separated by a
physical distance of �18 kb, thus their positions are not distinguishable
at the plotted scale. (B) Scatter plot of association results from a
conditional mixed linear model analysis and LD estimates (r2). The SNP
from the optimal multi-locus mixed-model (S2_157751802) was included
as a covariate in the mixed linear model to control for the large-effect
locus. None of the tested SNPs were significant at a 5% FDR.
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we searched for more plausible candidate genes within 250 kb of
other significant SNPs in LD with the peak SNP. This led to our
primary focus on five SNPs significantly associated with cad-
mium that were in moderately strong LD (mean r2 of 0.48) with
the peak SNP and located within the heavy metal ATPase3
(hma3; Zm00001d005190) and heavy metal ATPase4 (hma4;
Zm00001d005189) genes (Supplementary Table S5). Notably, the
hma3 and hma4 genes, which were �630 kb from the peak SNP,
encode proteins with 71 and 66% amino acid sequence identity to
OsHMA3 (Supplementary Table S5), a P1B-type ATPase involved
in sequestration of cadmium in root vacuoles of rice (Ueno et al.
2010).

To better resolve the expansive association signal resulting
from a large-effect locus located in a long range, high LD genomic
region, a chromosome-wide multi-locus mixed-model procedure
(MLMM) was conducted for cadmium. The resulting optimal
model only included the peak SNP (S2_157751802) on chromo-
some 2 (Supplementary Table S6). When GWAS was reconducted
with this MLMM-selected SNP included as a covariate in the
mixed linear model to control for this large-effect locus on chro-
mosome 2, all other previously significant associations on chro-
mosomes 2 and 8 were no longer significant at a genome-wide
FDR of 5% (Figure 1B).

We identified 21 SNPs that spanned a 1.21-Mb region on chro-
mosome 7 that were significantly associated with the concentra-
tion of zinc in fresh kernels (Figure 2A). The peak SNP
(S7_174515604; P-value 3.19� 10�10; 180,076,727 bp) for this asso-
ciation signal explained 7% of the phenotypic variance for zinc
and was located within the ORF of a gene (Zm00001d022563) that
encodes a tetratricopeptide repeat-like superfamily protein
(www.maizegdb.org). Notably, this peak SNP was located �111 kb
from the nicotianamine synthase5 (nas5) gene (Zm00001d022557;
Supplementary Table S5), which encodes a class II NAS that pre-
sumably contributes to the production of the metal chelator nico-
tianamine (Zhou et al. 2013). Of the 21 detected SNP-zinc
associations, SNP S7_174279369, which was located �160 kb
from nas5 and in moderately strong LD (r2 ¼ 0.49) with the peak
SNP for zinc, also had a near significant association (FDR-ad-
justed P-value 0.06) with the concentration of iron in fresh ker-
nels. When using the chromosome-wide MLMM procedure to
better clarify the association signal complex within the 1.21-Mb re-
gion on chromosome 7 for zinc, only the peak SNP S7_174515604
was included in the optimal model (Supplementary Table S6).
With the MLMM-selected peak SNP as a covariate, a conditional
mixed model analysis did not detect any SNPs significantly associ-
ated with zinc (Figure 2B).

Compared to cadmium and zinc, a relatively weaker associa-
tion signal consisting of seven significant SNPs was identified
for boron concentration on chromosome 1. Collectively, these
seven SNPs comprised a 98.99-kb interval. The peak SNP
(S1_189146031; P-value 5.01� 10�7; 191,327,920 bp), which was lo-
cated within the ORF of a gene (Zm00001d031473) encoding a
protein with 87% sequence identity to an aminoacylase in rice
(Supplementary Table S5), explained 5% of the phenotypic vari-
ance for boron concentration. Of the other candidate genes
within 250 kb of the peak SNP position, a gene (Zm00001d031476)
found to be �45 kb away from the peak SNP encodes a protein
with 40–45% amino acid sequence identity to two heavy metal-
associated isoprenylated plant proteins (HIPPs) in Arabidopsis
(Supplementary Table S5) that are putative metallochaperones
(de Abreu-Neto et al. 2013). Indicative of a weaker effect locus, the

MLMM procedure at the chromosome-wide level did not select
any SNP for the optimal model.

To identify marker-trait associations that may be location-
specific, we conducted GWAS for the 15 fresh kernel elemental
phenotypes within each location (NY, Supplementary Figure S6;
WI, Supplementary Figure S7), resulting in significant association
signals detected for cadmium (NY and WI), zinc (NY and WI),
nickel (NY), and calcium (WI) at 5% FDR (Supplementary Table
S4). In the NY location, the association signal for cadmium con-
sisted of 198 SNPs that defined a 36.89-Mb region on chromosome
2, with the peak SNP (S2_157751802; P-value 2.64� 10�19;
162,398,589 bp) for the signal the same as detected for cadmium
across locations (Supplementary Table S4). Potentially the result
of differential environmental variability combined with lower
mapping precision from fewer evaluated inbred lines relative to
the NY location (Supplementary Table S3), a different peak asso-
ciation signal (S2_159765450; P-value 1.98� 10�15; 164,415,588 bp)
that contained 81 SNPs covering 32.92-Mb on chromosome 2 was

Figure 2 Genome-wide association study for zinc concentration in fresh
kernels of sweet corn. (A) Scatter plot of association results from a mixed
model analysis and linkage disequilibrium (LD) estimates (r2). The
vertical lines are –log10 P-values of single nucleotide polymorphisms
(SNP), with the blue color representing SNPs that are statistically
significant at a 5% false discovery rate (FDR). Triangles are the r2 values
of each SNP relative to the peak SNP (indicated in red) at 180,076,727 bp
(B73 RefGen_v4) on chromosome 7. The red horizontal dashed line
indicates the –log10 P-value of the least statistically significant SNP at a
5% FDR. The black vertical dashed line indicates the genomic position of
the nicotianamine synthase5 (nas5; Zm00001d022557; 179,964,493-
179,965,584 bp) gene. (B) Scatter plot of association results from a
conditional mixed linear model analysis and LD estimates (r2). The SNP
from the optimal multi-locus mixed-model (S7_174515604) was included
as a covariate in the mixed linear model to control for the large-effect
locus. None of the tested SNPs were significant at a 5% FDR.
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identified for cadmium in the WI location (Supplementary
Table S4). The peak SNP for the WI location was �1.38-Mb from
hma3 and hma4, whereas the peak SNP in the NY location was
�630 kb from the same two candidate genes. Within each loca-
tion, the chromosome-level MLMM procedure was performed for
cadmium (Supplementary Table S6), selecting only the peak SNP
that when included as a covariate in a conditional GWAS ren-
dered all other associations on chromosomes 1 (NY), 2 (NY and
WI), and 3 (NY and WI) no longer significant.

In both locations, the same SNP served as the peak association
signal (NY: P-value 4.89� 10�8; WI: P-value 7.75� 10�8) for zinc,
which was �111 kb from nas5 on chromosome 7 (Supplementary
Table S4). The same SNP was also detected as the peak associa-
tion signal for zinc across locations. The chromosome-wide
MLMM approach selected only the peak SNP in the best model
within each location (Supplementary Table S6). With the peak
SNP as a covariate in a conditional GWAS, the other previously
detected SNPs for zinc on chromosome 7 in NY (6 SNPs) and WI (3
SNPs) did not remain significant. Similar to the results from con-
ducting the across-location GWAS, SNP S7_174279369, which was
�160 kb from nas5, had a weak association (FDR-adjusted P-value
0.07) with iron in the NY location. In contrast to the across-location
GWAS, however, this SNP was not significantly associated with
zinc in either the NY or WI locations (Supplementary Table S4).

A significant association signal was detected for calcium in
the WI location but not the NY location (Supplementary Table
S4). This signal for calcium consisted of four SNPs on chromo-
some 10. The peak SNP (S10_124069084; P-value 6.09� 10�8;
125,112,781 bp) was �36 kb from a gene (Zm00001d025654) that
codes for a protein with 47–49% sequence identity to two HIPPs in
Arabidopsis (Supplementary Table S5). In addition, this peak SNP
was selected by the MLMM in the optimal model at the chromo-
some-wide level (Supplementary Table S6). In concordance with
other conditional GWAS results, no other SNPs remained signifi-
cant when SNP S10_124069084 was used as a covariate in the
mixed linear model.

Of the two field locations, we only detected a significant asso-
ciation for nickel in the NY location. The association signal for
nickel on chromosome 9 consisted of four SNPs, with the peak
SNP (S9_2213924; P-value 2.80 3 10�8; 1,934,330 bp) for the signal
selected by the MLMM in the optimal model (Supplementary
Tables S4 and S6). The peak SNP was within the ORF of a gene
(Zm00001d044768) that encodes a protein 39–47% identical at the
amino acid sequence level to three members of the NITRATE
TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family
(NPF) in Arabidopsis (Supplementary Table S5) that transport ni-
trate, amino acids, and hormones (Léran et al. 2014). In addition,
this peak SNP was �44 kb from a gene (Zm00001d044771) coding
a protein with 49–52% sequence identity to three matrix metallo-
proteinases (MMPs) in Arabidopsis (Supplementary Table S5) that
have a zinc-binding sequence (Marino and Funk 2012). All other
significant SNPs on chromosome 9 and a single significant SNP
on chromosome 5 were no longer significantly associated with
nickel in a conditional mixed linear model with the peak SNP as a
covariate.

Whole-genome prediction
We evaluated the predictive ability of WGP with 147,762 SNP
markers for the across-location concentrations of 15 elements
that had been scored on fresh kernels of the 401 inbred lines. The
15 elements had an average predictive ability of 0.37, ranging in
abilities from 0.19 for rubidium to 0.52 for copper (Table 3). The
predictive abilities were above average for iron (0.45) and zinc

(0.49), suggesting that genomic selection could be used to in-
crease the concentration of both nutritionally limiting microele-
ments in fresh sweet corn kernels. A strong positive Pearson’s
correlation coefficient (r¼ 0.62 P-value < 0.05) was found between
heritability estimates and predictive abilities for the 15 elemental
phenotypes. Given the detection of significant differences among
endosperm mutation types for 10 of the 15 elemental phenotypes
(Table 2), endosperm mutation type was tested as an included co-
variate in WGP models, but changes to prediction abilities from
its inclusion were zero to negligible (Table 3).

Discussion
Maintaining elemental homeostasis is critical for plants to realize
optimal growth and complete their life cycle (Marschner 2011). In
addition, the elemental content and composition of edible plant
parts are influenced by genetic and environmental factors
(Watanabe et al. 2007; Baxter and Dilkes 2012; Baxter et al. 2014).
Several genes responsible for natural variation of elemental lev-
els in root and shoot tissues have been identified and character-
ized in plants (Huang and Salt 2016; Yang et al. 2018), but
considerable effort remains to pinpoint the genes regulating
elemental levels in seed of crops. To further this research, we
examined the extent of phenotypic variation for elemental con-
centrations in fresh kernels and performed a GWAS to identify
candidate genes controlling this phenotypic variability in a sweet
corn association panel. We also evaluated the ability of genome-
wide markers to predict elemental concentrations, providing
insights into the potential of genomic selection for optimizing the
elemental profile of fresh kernels for human health and nutri-
tion, especially iron and zinc. To the best of our knowledge, this
work is the most extensive quantitative genetic analysis of ele-
mental concentrations in fresh kernels of sweet corn.

The rank order of average concentrations for the measured ele-
ments in fresh kernels from the sweet corn association panel was
highly concordant with that observed for the same elements in
physiologically mature grain from the maize Ames panel of non-
sweet corn tropical and temperate inbred lines (Wu et al. 2021) and
the B73 (dent; Su1) x IL14H (sweet corn; su1) recombinant inbred
line (RIL) family of the U.S. NAM panel (Baxter et al. 2014). Our
sweet corn association panel showed a range of 13.66–28.11 and

Table 3 Predictive abilities (standard deviation) of whole-genome
prediction models for 15 fresh kernel elemental phenotypes in
the sweet corn association panel

Trait GBLUP GBLUP with endosperm
mutation type covariate

Boron 0.23 (0.02) 0.22 (0.02)
Cadmium 0.41 (0.02) 0.43 (0.02)
Calcium 0.27 (0.03) 0.27 (0.03)
Copper 0.52 (0.01) 0.53 (0.01)
Iron 0.45 (0.02) 0.45 (0.02)
Magnesium 0.40 (0.02) 0.40 (0.02)
Manganese 0.48 (0.02) 0.47 (0.02)
Molybdenum 0.25 (0.03) 0.25 (0.03)
Nickel 0.40 (0.02) 0.40 (0.02)
Phosphorus 0.47 (0.02) 0.47 (0.02)
Potassium 0.42 (0.02) 0.42 (0.02)
Rubidium 0.19 (0.03) 0.18 (0.03)
Strontium 0.32 (0.02) 0.32 (0.02)
Sulfur 0.26 (0.02) 0.27 (0.02)
Zinc 0.49 (0.02) 0.49 (0.02)
Average 0.37 0.37
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18.58–32.10lg g-1 on a dry weight basis for iron and zinc, respec-
tively. However, these ranges were both lower and narrower than
that found for iron (14.62–36.33lg g-1; 3.29 S.D.) and zinc (12.59–
52.32lg g-1; 4.36 S.D.) in physiologically mature grain from the
maize Ames panel (Wu et al. 2021). With consideration of losses
from processing and bioavailability, the recommended target level
iron and zinc grain concentrations established by HarvestPlus,
which has a primary focus on developing nations where nutritional
deficiencies are prevalent, are 60 and 38 lg g-1 dry weight, re-
spectively, for developing biofortified maize based on achieving
�30–40% of estimated average requirements for adult women
(nonpregnant, nonlactating) when consuming 400 g d-1 of whole
maize grain (Bouis and Welch 2010). Although the maximum
iron concentration observed in our sweet corn association panel
(28.11 lg g-1 dry weight) is �twofold lower than the HarvestPlus
breeding target, there are six inbred lines that have zinc concen-
trations ranging from 30.00 to 32.10 lg g-1 dry weight. As it
relates to the consumption of fresh sweet corn when not a pri-
mary source of daily calories, the estimated maximum fresh
kernel concentrations observed in our association panel would
provide approximately 4–9% and 7–10% of the RDA of iron and
zinc, respectively, for adult nonelderly women (nonpregnant,
nonlactating) and men when consuming 100 g (�75% water) of
uncooked fresh sweet corn. Irrespective of lacking experimental
data from bioavailability assays, our comparison of phenotypic
distributions to dietary guidelines implies that the top 5% high-
est ranking lines for iron (�22 lg g-1 dry weight) and zinc (�
28 lg g-1 dry weight) concentrations have promise for establish-
ing a biofortification program for sweet corn.

We assessed whether the concentrations of elements differed
significantly among endosperm mutation group types. Of the 15
elements, copper, iron, manganese, potassium, and sulfur were
highly significantly different (P< 0.001) between two or more en-
dosperm mutation type groups (su1, sh2, and su1sh2) (Table 2).
Relatedly, Baxter et al. (2014) showed that the content for four
(iron, manganese, potassium, and sulfur) of these five elements
significantly differed (P< 0.0005) between visibly “wrinkled” (su1/
su1) and “nonwrinkled” (Su1/su1 or Su1/Su1) kernels harvested at
physiological maturity. As it relates to the spatial distribution of
elements in sweet corn kernels, Cheah et al. (2019) analyzed im-
mature (21 DAP) kernels from a single sweet corn (sh2) variety via
synchrotron-based X-ray fluorescence microscopy to reveal that
potassium and calcium were generally present throughout the
kernel, sulfur concentrated mainly in the axis of the embryo and
the periphery of the endosperm, and the scutellum of the embryo
had at least 20-fold higher concentrations of phosphorus, iron,
zinc, and manganese than in the endosperm. Notably, Cheah
et al. (2019) also showed that these spatial distribution maps for
elements were highly similar to those of immature maize (non-
sweet corn) kernels. Despite these valuable insights from earlier
studies, further experimental work will be needed to determine
whether the observed significant difference in concentrations of
the five elements among endosperm mutation type groups in our
sweet corn association panel was attributed to variation in physi-
ological, genetic, and/or physical attributes of fresh kernels.

Conducting GWAS across locations for the concentrations of
elements in fresh kernels of the sweet corn association panel
resulted in the identification of candidate genes associated with
cadmium and zinc at the genome-wide level. Of these elements,
the strongest association signal was for cadmium, having an as-
sociation signal on chromosome 2 that spread more than 35-Mb
across a recombinationally inert genomic region. In addition, the
peak SNP of this association signal co-localized with the single

across-location QTL detected for grain cadmium concentration in
the maize NAM panel (Supplementary Tables S4 and S7), but
the GWAS resolution for this region in the NAM panel
(Supplementary Table S8) was too limiting to convincingly iden-
tify an underlying causal gene (Ziegler et al. 2017). In our sweet
corn association panel, however, two likely candidate causal
genes were identified, hma3 and hma4, both having SNPs in mod-
erately strong LD with the peak SNP of the association signal.
These genes are two of a 12-member gene family encoding HMAs
in the genome of maize inbred line B73 (Cao et al. 2019).

Of the 12 HMA genes, the proteins encoded by hma3 and
hma4 have high sequence identity (Supplementary Table S5) to
the P1B-type ATPase, OsHMA3—a tonoplast-localized zinc/cad-
mium transporter that has been shown to be expressed in rice
roots, mediates cadmium and zinc vacuolar sequestration and, as
such, participates in zinc homeostasis and root-to-shoot cadmium
translocation (Ueno et al. 2010; Miyadate et al. 2011; Sasaki et al.
2014; Cai et al. 2019). The loss-of-function of OsHMA3 has been as-
sociated with cadmium accumulation in rice grains, whereas low-
cadmium rice cultivars express a functional OsHMA3 (Ueno et al.
2010). Furthermore, Ueno et al. (2010) have shown that the overex-
pression of OsHMA3 selectively decreased the accumulation of
cadmium, but not other elements in the grain. In a follow-up
study, Sasaki et al. (2014) showed that overexpression of OsHMA3
resulted in sequestration of both cadmium and zinc in rice root
vacuoles, but the concentration of zinc in shoots was unaffected
through the constitutive upregulation of transporter genes having
putative involvement in the uptake and translocation of zinc. In
agreement with Sasaki et al. (2014), we found no evidence of the
large-effect locus spanning hma3 and hma4 having a significant as-
sociation with zinc concentration in fresh sweet corn kernels.
Importantly, Cao et al. (2019) identified several polymorphisms
within hma3 to be significantly associated with leaf cadmium con-
centration at the seedling and adult plant stages in a maize diver-
sity panel. Moreover, they further showed the expression level of
hma3 to be highly upregulated in the roots of B73 in response to
cadmium stress, whereas the expression of hma4 was undetectable
in roots under the same conditions (Cao et al. 2019). Considering
this, we propose that hma3 is the more likely of the two genes to
have played a key genetic role in the accumulation of cadmium in
fresh kernels.

The nas5 gene was found to be within 250 kb of the peak SNP
for the across-location zinc and iron association signals on chro-
mosome 7. These findings co-locate with the GWAS results of
Ziegler et al. (2017) and Wu et al. (2021) from the U.S. maize NAM
(Supplementary Tables S4, S7, and S8) and Ames mapping pan-
els, respectively, that implicated nas5 as a possible pleiotropic
controller for the concentrations of both zinc and iron in physio-
logically mature grain samples. As one of nine gene family mem-
bers in the B73 reference genome, nas5 phylogenetically groups
together with nas3 and nas4, which together comprise class II nas
genes (Zhou et al. 2013). The NAS enzyme encoded by nas5 is hy-
pothesized to be involved in the production of the nonproteino-
genic amino acid, nicotianamine, an efficient chelator of
transition metals including zinc and iron (Takahashi et al. 2003;
Curie et al. 2009; Swamy et al. 2016). In addition, to a suggested
role in intracellular metal homeostasis, nicotianamine facilitates
phloem-based metal delivery from source (e.g., leaves) to sink
(e.g., seeds) tissues (Takahashi et al. 2003; Curie et al. 2009; Swamy
et al. 2016). Nicotianamine also serves as a precursor for the syn-
thesis of root-exuded mugineic acid-type phytosiderophores that
chelate divalent metals for eventual root uptake (Curie et al. 2009;
Swamy et al. 2016).
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Consistent with a proposed role of nas5 in long-distance metal
transport rather than uptake into roots, Zhou et al. (2013) showed
that transcripts of class II nas genes including nas5 accumulated
mainly in maize leaves and sheath, whereas class I nas genes
were predominantly expressed in maize roots. Interestingly, of
the three class II nas genes, nas5 was more highly expressed in
maize stems, further suggesting its contribution to long-distance
metal transport and perhaps its contribution to metal loading to
seeds (Zhou et al. 2013). In addition, the transcriptional expres-
sion level of nas5 was downregulated by iron deficiency in both
shoots and roots but upregulated under excess iron and zinc in
roots. Activation tagging of OsNAS3, the closest rice homolog of
nas5 (Zhou et al. 2013), produced an increased level of nicotian-
amine that resulted in elevated levels of zinc and iron in shoots,
roots, and seeds of activation-tagged rice plants (Lee et al. 2009).
Despite the lack of functional validation, results from the maize
association mapping and transgenic rice studies strongly support
the nomination of nas5 as a causal gene for controlling zinc and
iron concentrations in fresh sweet corn kernels.

Similar to our findings with nas5 in the sweet corn association
panel, Wu et al. (2021) also identified a stronger association signal
of nas5 with zinc relative to iron in the maize Ames panel. This
finding is not entirely surprising considering that the affinity con-
stants (Kd) of complexes of nicotianamine with zinc is higher
than for nicotianamine with iron (Curie et al. 2009; Gayomba et al.
2015). Therefore, it is plausible to propose that equimolar concen-
trations of iron and zinc would result in the selection of zinc for
nicotianamine over iron (Curie et al. 2009; Gayomba et al. 2015). It
is also noteworthy that the concentration of zinc in the phloem
sap is thought to be higher than the concentration of iron
(Reviewed in Gayomba et al. 2015), thus reinforcing the sug-
gested role of nicotianamine and nas5 in zinc accumulation in
fresh kernels.

In contrast to the highly probable causality of the hma3 and
nas5 loci detected via GWAS across and within both locations,
there is only moderately compelling evidence for the genetic in-
volvement of identified candidate genes for the concentrations of
boron (across locations), calcium (WI), and nickel (NY). Of the
genes within 250 kb of the peak SNP for the boron association
signal on chromosome 1, two genes encoding a putative
protein with sequence identity to either an aminoacylase
(Zm00001d031473) or HIPP (Zm00001d031476) were the most
plausible candidates. Under boron deficiency, aminoacylases
(metalloenzymes involved in amino acid metabolism) have been
shown to have decreased protein and increased transcript levels
in Brassica napus L. roots and Citrus sinensis leaves, respectively
(Wang et al. 2010; Lu et al. 2015). Transcriptome profiling revealed
a HIPP to be upregulated in leaves and roots of black poplar
(Populus nigra L.) grown under boron toxicity (Yıldırım and Uylaş
2016), which perhaps is not surprising given that HIPPs are metal-
lochaperones involved in the transport of metallic ions and re-
sponse to abiotic stresses (de Abreu-Neto et al. 2013). Despite
these findings in other plant systems, the exact mechanism by
which the identified aminoacylase and HIPP would have contrib-
uted to the accumulation of boron in fresh kernels is unknown
but nevertheless merits further experimental investigation.

Although the peak SNP associated with calcium concentration
in the WI location resided within a genomic region that lacked a
definitive candidate gene, it was located �36 kb from a gene
(Zm00001d025654) encoding a putative HIPP. However, to our
knowledge, HIPPs have never been experimentally shown to bind
Ca2þ (de Abreu-Neto et al. 2013), thus an in vitro study would be
needed to determine whether Ca2þ is bound by the putative HIPP

that Zm00001d025654 encodes. It is interesting that collectively,
two different HIPP candidate genes were identified for the con-
centrations of boron and calcium, but these proteins would not
be expected to have similar roles given that calcium and boron
have different chemical and physiological properties (Marschner
2011). Regardless, these findings open new avenues of inquiry
that could deepen our understanding of the genetic basis of bo-
ron and calcium accumulation in fresh sweet corn kernels.

In contrast to calcium, the nickel association signal for the NY
location coincided with association signals detected for nickel
grain concentrations in the maize NAM (Supplementary Tables
S4, S7, and S8) and Ames panels (Ziegler et al. 2017; Wu et al.
2021). This still genetically unresolved signal consisted of two
possible candidate genes, an MMP (Zm00001d044771) and NPF
member (Zm00001d044768). Even though MMPs could conceiv-
ably bind nickel in place of zinc (Cerdà-Costa and Gomis-Rüth
2014), their proteolytic activities to remodel the extracellular ma-
trix (Marino and Funk 2012) lack a clear connection to nickel
transport or accumulation. In addition, the putative NPF member
encoded by Zm00001d044768 is hypothesized to transport nitrate
given its high sequence identity to members of the NPF5 subfam-
ily in Arabidopsis (Supplementary Table S5) (Ni~no-González et al.
2019), thus reducing but not completely eliminating the possibil-
ity that this yet-to-be characterized protein transports nickel or a
substrate that binds nickel.

We showed that, on average, moderate predictive abilities
were achieved through the application of WGP for the across-
location concentrations of the 15 elements in fresh sweet corn ker-
nels. In addition, these predictive abilities were found to be
strongly correlated with heritability estimates, which coheres with
expectations (Combs and Bernardo 2013). In accordance with these
results, Wu et al. (2021) analyzed 11 of these 15 elements in mature
grain samples from the maize Ames association panel that had
been evaluated in a single location across two years, finding that
the moderate predictive abilities of the 11 elements from WGP had
a strong correlation with their heritabilities. Also, the prediction
abilities presented in Table 3 suggest that endosperm mutation
type did not need to be considered as a covariate in WGP models to
capture the genetic differences between the three groups at the ge-
nome-wide marker density employed in this study. Given that we
observed significant G� E interaction for boron, copper, iron, mag-
nesium, and rubidium, accounting for G�E in WGP models could
result in slightly improved predictive abilities for these five ele-
ments. In support of this supposition, a multi-environment model
incorporating G�E resulted in higher average prediction abilities
for the concentration of zinc in kernels from a tropical maize in-
bred panel and a double haploid population compared to those
from single-environment models (Mageto et al. 2020). Therefore,
this should be an area of further exploration when conducting
multi-environment genomic selection for elemental phenotypes
whether at the immature or mature stages of kernel development.

The results from GWAS can be used to better inform how best
to successfully implement genomic selection for the concentra-
tions of elements in fresh sweet corn kernels. Apart from cad-
mium (18%) and zinc (7%), which each had a single locus
explaining more than 5% of the phenotypic variance in the
across-location GWAS, we observed relatively weaker association
signals for boron, iron, and the other 11 elements in fresh kernels.
Furthermore, we did not identify all of the strong association sig-
nals for the grain concentrations of boron, copper, manganese,
molybdenum, nickel, and zinc that had been detected in the
maize Ames panel (Wu et al. 2021). Compared to the Ames panel
study of Wu et al. (2021) that had more than 2000 maize inbred
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lines, it is likely that the size of the sweet corn association panel
in our study was too underpowered to identify these loci, whether
because of their lower allele frequencies and/or weaker effects.
Regardless, we posit that these elemental phenotypes are gener-
ally more polygenic than carotenoid and tocochromanol levels in
fresh kernels of sweet corn that have a more oligogenic inheri-
tance (Baseggio et al. 2019, 2020), thus making elemental pheno-
types less tractable for genetic dissection in the sweet corn
association panel. Therefore, genomic selection is more advisable
than marker-assisted selection as a breeding approach for select-
ing for the concentration of elements in fresh kernels (Lorenz
et al. 2011; Desta and Ortiz 2014). However, it is still worthwhile to
assess the inclusion of large-effect loci as fixed effects such as
those for cadmium and zinc in WGP models, as it could result in
higher prediction abilities in specific sweet corn breeding popula-
tions (Bernardo 2014).

Conclusions
We used a sweet corn association panel to study the quantitative
genetics of natural variation for the concentrations of 15 ele-
ments in fresh kernels. Through an across-location GWAS, we
strongly implicated the candidate causal genes nas5 with iron/
zinc and hma3 with cadmium. Given that iron and zinc accumu-
lation in fresh kernels have a partially shared genetic basis, the
genetic correlation between these two phenotypes can be lever-
aged with multi-trait genomic selection approaches to possibly
exceed the prediction accuracy of single-trait genomic selection
(Jia and Jannink 2012) for simultaneous genetic gains in zinc and
iron concentrations. Such efforts would help to address iron and
zinc deficiencies of women, children, and older adults in the U.S.
(Clark 2008) where sweet corn is highly consumed as a fresh veg-
etable. Importantly, the across- and within-location association
signals at the nas5 and hma3 loci were specific to zinc/iron and
cadmium, respectively. This suggests that genomic selection for
lower cadmium accumulation to reduce possible toxicity should
not influence zinc accumulation in the kernel. Even though 100 g
of fresh sweet corn (medium-sized ear) with the maximum con-
centration of cadmium found in this panel is estimated to pro-
vide less than 2% of the provisional tolerable intake for this
element in a day (0.8 lg/kg bw/day) (JECFA 2011) when consumed
by a 70 kg person, efforts should be dedicated toward developing
haplotype tagging SNP markers at the nas5 and hma3 loci for
breeding sweet corn that has lower cadmium but higher bioavail-
able zinc and iron, considering that sweet corn can be grown in
regions with naturally elevated cadmium levels, or with low zinc
and iron levels.
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