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Landraces	(traditional	varieties)	of	domesticated	species	
preserve	useful	genetic	variation,	yet	they	remain	untapped	
due	to	the	genetic	linkage	between	the	few	useful	alleles	and	
hundreds	of	undesirable	alleles1.	We	integrated	two	approaches	
to	characterize	the	diversity	of	4,471	maize	landraces.		
First,	we	mapped	genomic	regions	controlling	latitudinal		
and	altitudinal	adaptation	and	identified	1,498	genes.		
Second,	we	used	F-one	association	mapping	(FOAM)	to	map	
the	genes	that	control	flowering	time,	across	22	environments,	
and	identified	1,005	genes.	In	total,	we	found	that	61.4%	of	
the	single-nucleotide	polymorphisms	(SNPs)	associated	with	
altitude	were	also	associated	with	flowering	time.	More	than	
half	of	the	SNPs	associated	with	altitude	were	within	large	
structural	variants	(inversions,	centromeres	and	pericentromeric	
regions).	The	combined	mapping	results	indicate	that	although	
floral	regulatory	network	genes	contribute	substantially	to	field	
variation,	over	90%	of	the	contributing	genes	probably	have	
indirect	effects.	Our	dual	strategy	can	be	used	to	harness	the	
landrace	diversity	of	plants	and	animals.	

Maize (Zea mays subsp. mays) is a model organism with a 100-year 
legacy of cytological, genetic and biomolecular characterization2. 
Maize displays high genetic diversity with low linkage disequilib-
rium (LD)3,4, low population differentiation5, prevalent migration6 
and occasional introgression from wild relatives7–9. More recently, 
experimental populations like the Nested Association Mapping 
(NAM) populations10,11, and large association panels4,12 have allowed 
mapping and deployment of useful alleles for several quantitative 
traits13–16. However, these panels’ founder lines are inbred improved 
lines (with many from temperate regions) and capture only a modest  
fraction of available diversity. In contrast, maize landraces span 

numerous ecogeographic areas and harbor most of the diversity of 
the species. Recent studies have provided small-scale characterization 
of Mexican17 and European landraces18. Nevertheless, most maize and 
other crop landraces remain largely uncharacterized by genomics.

Here we map the genes that control flowering with two distinct 
methods. First, each landrace is well adapted to their native envi-
ronments, and we used that environmental information as the trait 
to identify genes driving large-scale adaptation. Second, we mapped 
flowering-time variation in controlled field experiments through a 
newly developed, rapid experimental design called F-one associa-
tion mapping (FOAM) (Fig. 1). FOAM consists of sampling single 
individuals across numerous populations, which are then genotyped 
and crossed to one or a small number of common parents to derive F1 
families. Subsequently, a genome-wide association study (GWAS) is 
performed using multi-trial F1 progeny evaluation. The major advan-
tages of this design include: (i) the ability to capture thousands of 
alleles across populations, (ii) the ability to maintain the tractability 
of two alleles per locus per population, and (iii) ample replication of 
alleles, increasing the power and accuracy for genetic effect estima-
tion. FOAM’s main limitation is that nested evaluation of different 
subsets of F1 progeny by ecological zone limits the ability to accurately 
estimate genotype-by-environment interactions.

Our FOAM population used individuals from 4,471 accessions 
across 35 countries in the Americas (Fig. 2), which were grouped 
into three adaptation classes to account for adaptation to low, mid-
dle or high elevation. Similarly, common parents and evaluation sites 
were nested within the adaptation class (Supplementary Fig. 1)19,20.  
We used genotyping-by-sequencing21 on landrace parents and found 
almost one million SNPs, and missing data was imputed using BEAGLE4 
(ref. 22). Of 4,471 accessions, 3,552 yielded F1 families that contained 
both genotypic profiles and sufficient progeny, 3,633 that contained 
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passport information, which was used for mapping large-scale adapta-
tion, and 2,603 that were present in both mapping studies.

We first explored the effects of recombination and geography-
driven limited dispersal on the distribution of genetic diversity in 
the landrace parents. By using multidimensional scaling (MDS), we 
found that the first two axes only explained 8.7% of the variation, 
consistent with a low fixation index (FST) in landraces5, with the main 
differentiation reflecting gradients across the northern and southern 
hemispheres and across Mexico (Supplementary Fig. 2). In addition, 
a Mantel test23 showed a significant correlation between geographic 
and genetic distances (Pearson’s r = 0.46, P = 0.000999001), with most 
of the association being driven by altitude. MDS shows that country 
of origin—not adaptation class—remains the main clustering factor  
among the landraces (Supplementary Fig. 3); landraces found at high 
elevation mainly corresponded to sampling locations across Mexico, 
and highland landraces show incomplete differentiation from mid-
dle and low elevation populations. This indicates that at their center 
of origin and diversity, maize landraces that are adapted to differ-
ent elevations are not fully differentiated, with alleles segregating 
across adaptation classes. Recombination can also limit free segrega-
tion of alleles through the presence of genomic features that induce 
increased LD. To study recombination, we estimated an approximate 
LD statistic that, although limited in resolution, shows a distribution 
consistent with previous recombination estimates24,25—higher in 
gene-rich regions and lower around centromeres. Each chromosome 
displays a unique recombination landscape, with six high-LD regions 
(Supplementary Fig. 4) encompassing 6.1% of the physical genome 
but only accounting for 2.8% of the annotated coding genes. Taken 
together, these results suggest that geography (in the form of isolation 
by distance and altitude) and genome structure (through a complex 
recombination landscape) function together to shape the distribution 
of maize genetic variation.

Maize flowering time is crucial for local adaptation, and it is a 
complex trait controlled by hundreds of loci with small effects, 
many with multiple allelic series4,14,26–31. In many plant species, the 
genetic architecture underlying flowering time is key for adaptation 
to latitude and altitude32–34. Therefore, we used the altitude and 
latitude of the sampling location as traits to map local adaptation, 
and we chose significance thresholds to maximize the genic overlap 
rate with flowering time (Supplementary Fig. 5). For altitude, we 
observed that 58.4% of significant (—log10(P value) > 208.2) SNPs 
corresponded to regions with higher LD. In particular, Inv4m, the 
13-Mb adaptive introgression from highland teosinte into maize8,35 
was highly significant. For altitude we observed significance with 
the centromeres of chromosomes 2,5,6 and 8 and a large region 
upstream of the centromere on chromosome 3. Outside of these 

low-recombination regions, 366 genes showed significant association  
with altitude. For latitude, we observed that only 13.1% of the sig-
nificant SNPs (—log10(P value) > 61.63) were contained within  
low-recombination regions, particularly the centromere of chromo-
some 5. In total, across Latin America 1,498 genes showed signifi-
cant association with latitude, of which 395 were shared with altitude. 
Minor-allele frequency distribution of significant SNPs indicates that 
many are shared across clades and landraces, which is very distinct 
from neutral distribution (Fig. 3). These 1,498 genes seem to be the 
main contributors to large-scale environmental adaptation of maize 
to altitude and latitude—key drivers of flowering time.

To study the genetic basis of flowering time, we conducted field 
evaluations on F1 progeny over 22 trials and 2 years in 13 loca-
tions across Mexico, with each trial containing a different subset 
of the collection to maximize the number of accessions evaluated 
(Supplementary Table 1). A GWAS was performed independently 
for each trial by using a mixed linear model (MLM). There was a 
72% overlap between the significant (—log10(P value) > 18) SNPs 
associated with male and female flowering, as expected from the 
overlapping genetic control14. There was a significant contribution 
of low-recombination regions in flowering-time variation, parallel to 
that of latitude and longitude, with 20-fold enrichment for significant 
SNPs at high-LD regions (Pearson’s one-sided chi-squared test, P < 
2.2 × 10−16). In particular, significant structural variants included the 
centromeres of chromosomes 3, 5 and 6, Inv4m, and a 6-Mb region 
on chromosome 3 beginning at 79 Mb. The 6-Mb region on chromo-
some 3 has similar segregation to that of Inv4, and its increased LD 
suggests that it might be an inversion. In NAM populations, this puta-
tive inversion and the centromere comprise a single quantitative trait 
locus (QTL) for flowering time14. For the centromere of chromosome 
5, there were three distinct alleles segregating in the landraces, all of 
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Figure 1 Experimental design. One individual from each of up to 
thousands of individuals is genotyped and used as the parent. Progeny are 
then evaluated for multiple years and locations to estimate the genetic 
contribution of the original individual, and phenotypic and genotypic data 
are used for genome-wide association analysis.
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Figure 2 Geographic coordinates of original sampling sites of landrace 
accessions. Color gradient corresponds to altitude, with adaptation classes 
corresponding to low-elevation: <1,200 m above sea level and <30° N or 
40° S; mid-elevation: between 1,200 and 1,900 m above sea level  
and <30° N or 40° S; or high-elevation: >1,900 m above sea level and 
<30° N or 40° S (n = 3,633). Map was drawn using Draw Geographical 
Maps, R package version 3.1.1.
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which were present in the NAM population (Supplementary Fig. 6). 
The inverted allele of Inv4m, although absent from temperate plants, 
segregated at a high frequency in highland landraces (Supplementary 
Fig. 7), in which it had a very large additive effect, as it advanced 
flowering by 3 d, the largest effect for flowering time in maize to date. 
Both homozygous alleles from the putative chromosome 3 inversion 
segregated across our panel and NAM populations. Relative to that for 
Inv4m, this locus has a more modest effect on flowering time.

The phenotypic relevance of genomic structural variants in 
Mendelian and complex traits in species like Drosophila36 has been 
known for nearly a century. In plants, chromosomal rearrange-
ments can function as reproductive barriers in hybridization zones37, 
underlie flowering time changes and contribute to local adaptation38.  
The observed significant association of structural variants with flower-
ing time and local adaptation could be the product of heterosis, which 
in maize results in earlier flowering. At least one of the structural 
variants—the centromere of chromosome 5—has been reported to 
display a heterotic effect on yield39, potentially the product of the com-
plementation between alleles with deleterious mutations24. One of the 
alleles at the centromere of chromosome 5 segregates with a very low 
frequency across inbred lines, whereas the inversion of chromosome 4 
is absent outside of the breeding material from the tropical highlands. 
The low frequency or complete absence of large-effect structural vari-
ants in improved lines could be the product of the process of selection 
during the development of inbred lines, in which favorable alleles were 
fixed, whereas other structural alleles were purged.

Outside of the structural variants, we observed 881 and 883 genes 
(~2.2% of genes) with significant association for days to female and male 
flowering, respectively (Fig. 4 and Supplementary Tables 2 and 3).  
There was substantial enrichment for the candidate genes (Fisher’s 
exact test P = 4.3 × 10−7), with association of 10 and 12 candidate genes 
with male and female flowering, respectively, which represented the 
circadian clock, photoperiod and gibberellin acid pathways (Fig. 5).  
The most significant hits corresponded to VGT1 (refs. 31,40), one 
of the largest-known genotype-by-environment QTLs, and ZCN8 
(refs. 41,42), which encodes the maize florigen and homolog to FT 
in Arabidopsis. ZmCCT, the largest photoperiod QTL30, was modestly 
significant for latitude, and significant only for days to female flower-
ing, most likely due to sampling of the non-photoperiod-inducing 
accessions and of the trial locations. In maize, dwarf8 has a cryptic 
association with flowering time34. We observed significance of dwarf8 
with latitude, altitude, and both male and female flowering, specifi-
cally in regions 50-kb upstream and 100-kb downstream of the cod-
ing region. This region displays divergent selection associated with 

0

10

20

0.0 0.1 0.2 0.3 0.4 0.5

Minor allele frequency

D
en

si
ty

Marker Set
All genome
Altitude
Flowering time
Latitude

Figure 3 Minor allele frequency distributions. The genome-wide  
(n = 955,686) distribution of minor allele frequency shows a curve 
consistent with the expectation for a random mating population, with 
most of its density at low frequency; the median minor allele frequency 
was 1.8% genome wide. In contrast, the median minor allele frequencies 
of the SNPs associated with the various traits was significantly higher 
than those for the null distribution; median minor allele frequencies for 
flowering time (n = 5,818), altitude (n = 2,513) and latitude (n = 5,026) 
were 11%, 15% and 20%, respectively. For flowering time, although the 
density of the distribution was found at higher values than that for the  
null genome-wide distribution, a significant enrichment was observed  
just above 5%, which was the lower limit for SNPs to be considered  
in the GWAS models. A small fraction of flowering-time-associated SNPs 
overlap at high minor-allele-frequency SNPs with the SNPs associated 
with adaptation to altitude and latitude.
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Figure 4 Significance for flowering time, and overlap between  
flowering time and latitude- and altitude-associated SNPs.  
(a) Manhattan plot for ‘time to female flowering’ (in days), The x axis 
shows the positions across the ten maize chromosomes (n = 502,601). 
The y axis represents the −log10(P value) at each site (F-test; landrace 
accessions = 3,552; total landrace trial plots n = 18,797). (b,c) Venn 
diagrams showing the overlap between significant SNPs for flowering  
time and latitude (b) or altitude (c). Among the high-LD regions associated 
with both flowering time and altitude was Inv4, the adaptive introgression 
from highland teosinte to highland maize8,35. (d,e) Chromosome  
4 Manhattan plots displaying GWAS P values for ‘time to female  
flowering’ (F-test; landrace accessions = 3,552; total landrace trial plots, 
n = 18,797) (d) and altitude (F-test; n = 3,633) (e). The region between 
150 and 200 Mb with multiple contiguous significant SNPs corresponds 
to Inv4m, the adaptive introgression from highland teosinte to highland 
maize8,35. Inv4m was significantly associated with both flowering  
time and altitude.
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Figure 5 Flowering-time pathway, showing the genes involved in flowering 
time at the leaf and shoot apical meristem (SAM). Illustration is modified 
from that by Dong et al.44. The genes highlighted in red displayed 
significant association with flowering time in our study (−log10(P) > 18). 
miR, microRNA; GA, gibberellic acid.

climate adaptation43; in our landrace panel, adaptation and flowering 
time remained confounded.

Although the candidate and phase-change genes were enriched, 
most of the genes (Supplementary Tables 4 and 5) associated in this 
study may have an indirect effect on flowering-time variation through 
the action of their encoded protein products in upstream metabolism  
or in an interaction with the environment. Variation associated 
with flowering time displayed a significant effect with geography, 
with 61.4% and 19% SNP overlap with altitude and latitude, respec-
tively (Fig. 4). The high level of overlap between these pathways was 
expected, but the stronger relationship with altitude suggested a 
key role of temperature and light quality on flowering time; the low 
level of overlap with latitude was likely due to trials and sampling of  
variation outside of short-day environments. However, we observed 
differences in the minor allele frequency distribution of the significant 
SNPs. Variation associated with altitude and latitude were enriched 
for high minor allele frequency polymorphisms (Fig. 3), which sug-
gested that altitude and latitude associations were mostly due to 
globally adaptive SNPs, whereas flowering was a mix of high- and 
low-frequency mutations, likely adaptive variation and deleterious 
mutations (genetic load), respectively.

We assayed the potential for predicting flowering time in the  
landraces using either all of our high-density genetic markers or just 
the markers that were significantly associated with the trait. We per-
formed genome-wide predictions, using gBLUP, independently for 
each trial. Across trials, the average fivefold cross-validated prediction 
accuracy was 0.45 for flowering time using either 30,000 markers or 
one SNP for each of the most significant genes (Supplementary Fig. 8).  
In contrast, for a similar number of random genes the prediction 

accuracy was only 0.22. The observed similar prediction accuracy 
between the top genes from GWAS to that of 30,000 random markers 
highlights the potential for using the significantly associated markers 
for breeding and for combining exotic beneficial alleles with current 
improved germplasm.

Landraces can be an incredible resource that can be used to adapt 
crops to the next century of climate change. Despite the tremendous 
diversity of landraces, genetic load prevents their efficient use without 
a genomic index. Our work lays out two complementary strategies for 
tapping landrace diversity. Geographic associations powerfully identify 
adaptive loci, which are common across populations and are unlikely 
to be deleterious given their high minor-allele frequency. Allele shar-
ing is probably a consequence of outcrossing and extensive migration 
throughout Latin America in last several millennia. The limitation 
of this approach is that correlated traits and adaptations are being 
co-mapped. The FOAM GWAS helps differentiate the adaptive over-
lapping mutations from the potentially private deleterious mutations.  
These deleterious alleles have been the main limitation preventing 
breeders from exploiting landrace diversity. The strategy for tapping 
this diversity should use the overlapping genes and alleles of the two 
approaches, as these have proven to be adaptive and to target the trait 
of interest. Breeding could use standard genomic selection or genome 
editing. This provides an efficient strategy to use landrace diversity 
with the goal of helping to develop crops that adapt more efficiently 
to changing environments.
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ONLINe	MeThOdS
FOAM mating design and phenotypic evaluation. The mating design for 
the maize landrace FOAM population consisted of crossing each male lan-
drace individual from the 4,500 accessions to single-cross hybrid females of 
matching altitude-adaptation class. The reason to cross landrace individuals 
to single-cross hybrids was to produce abundant progeny for multiple cycles 
of evaluation across years and locations. The reason for matching landrace 
and hybrid adaptation was to avoid the negative confounding effect of lack 
of adaptation during field experiments. For the FOAM approach, progeny is 
evaluated across multiple trials and locations to estimate the genetic effects 
corresponding to the landrace parent. Alternative approaches could be to self-
pollinate the landrace individuals, cross them to a single or a few inbred lines 
representing the adaptation classes of landraces, or even generate doubled 
haploids18. Although those strategies could, in principle, result in higher sta-
tistical power, in outbreeding populations, such as maize landraces, this could 
lead to very few progenies for performing multiple evaluation cycles due to 
inbreeding depression, and several alleles could be lost due to linkage with 
deleterious lethal variants. In a pilot experiment, we observed several issues 
for using a doubled-haploid approach, first through asynchrony in flowering 
time between landraces and inducer lines, and later due to the very low rates 
of haploid induction (1–11%) and doubling rate (1.2–21.0%), partly due to 
the high rate of seedling mortality.

For our FOAM experiment, which was based on altitude adaptation, dif-
ferent subsets of progeny per trial were evaluated over 2 years in 13 locations 
across Mexico, with the main constraint for the number of progeny evalu-
ated per location being field space. There were between 288 and 1,928 acces-
sions per trial, with an average of 834. We used an augmented row–column 
design, which included systematic checks in field rows and columns45, that 
allowed for accounting of the field effects in the estimation of genetic effects. 
For each trial, each experimental row contained between 9 and 25 progeny 
plants (Supplementary Table 1). For the FOAM strategy, this meant that each 
of the 10–25 individuals per landrace accession contained, at each locus, one 
of the landrace alleles plus the corresponding hybrid allele. In other words, the 
phenotypic effect of the two gametes of the landrace individual is observed 
10–25 times per location. The replicated progeny evaluation across multiple 
locations means that the phenotypic effect of each landrace’s alleles is observed 
tens to hundreds of times, allowing for the accurate estimation of their addi-
tive genetic effects. For our FOAM approach, over half of the accessions were 
replicated in five trials, with a maximum value of 13 trials per accession and a 
minimum of 1 (Supplementary Fig. 9). Given the absence of genotypic data for 
each segregating progeny, we have good power to estimate the sum of additive 
effects; however, we did not estimate or test the dominance or epistasis effects. 
Furthermore, the lack of balanced replication limits the ability to accurately 
estimate genotype-by-environment effect.

Flowering time was measured in each trial following the maize standard, 
i.e., the number of days from planting until half of the individuals within a 
plot displayed silks for female flowering or anthers in half of the central spike 
for male flowering.

Analysis of phenotypic data. To estimate the breeding values of the lan-
drace accession parent, for each trial a mixed linear model was fitted using a 
restricted maximum-likelihood method, in ASREML (v. 3.0), using the prog-
eny’s calendar days to male or female flowering as a response variable. The 
models included fixed effects for checks, tester, and hybrid and a random effect 
of accession in a complete nested model. In addition, the model included the 
random effect of row and column using an autoregressive model of an order 
of 1 in row and columns to control experimental noise as a product of field 
variation. All random effects were considered independent from each other. 
The model used can be expressed as follows: 

yijkml i j k l k m kl ij= + + + + + +m g l a b d e( ) ( )  

where yijkml is the response variable, µ is the overall mean, γi is the effect of the 
i-th row, g si N~ ( , )0 1

2 , λj is the effect of the j-th column, l sj N~ ,0 2
2( ), αk is 

the effect of the k-th group, k = 1,…, K, K + 1 (if k ≤ K the group is a check),  
the group K + 1 is the average of testers, βl(k) is the effect of the l-th tester in 

group K + 1, δm(kl) is the effect of the m-th accession in the tester k in group 
K + 1, d sm kl klN( ) ~ ( , )0 2 , and εij is the experimental error.

For the experimental error we assumed the following distribution:

ε ~ N(0,Ó) with Σ = Σr  Σc
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Genotyping. Accessions that were used as male parents were genotyped using 
genotyping-by-sequencing (GBS)21, with ApeKI as the restriction enzyme, 
to a replication level of ~96 individuals per sequencing plate. Approximately 
8 × 109 sequencing reads were generated using an Illumina HiSeq for the 
landrace accessions, and sequence reads were analyzed jointly with another 
40,000 maize lines as part of the GBS build 2.7 using TASSEL46. On average, the 
missing data per individual and per site was 0.5 (Supplementary Fig. 10). By 
comparing the distributions of depth of the called sites, the median number of 
reads per site was 2 (Supplementary Fig. 11). For association analyses, missing 
data were imputed using BEAGLE4 (ref. 22), which has been shown to yield 
the best current accuracies in maize heterozygous material47. We observed an 
imputation accuracy with an R2 = 0.68, with no missing data after imputation. 
Following imputation, SNPs were filtered for minor allele frequency >1%, 
resulting in approximately 500,000 bi-allelic markers across the genome.

Diversity assessment. For the Mantel test23, we calculated the pairwise 
Euclidean-distance matrix based on the geographical data from the accessions 
(latitude, longitude and altitude). We estimated and tested separate Euclidean-
distance matrices for altitude, latitude and longitude, as well as one joint 
matrix. The genetic-distance matrix was estimated from a genome-wide ran-
dom sample of 30,000 non-imputed markers using TASSEL. The correlation  
between the genetic matrix and either the joint or altitude Euclidean- 
distance matrices was 0.46, with P-value estimation based on 1,000 permuta-
tions. Latitude and altitude had correlations of 0.04 and 0.07 with genetic 
distance, respectively. Mantel tests were performed using the R library ‘ade4’ 
(ref. 48). MDS was performed on the genetic-distance matrix using the ‘cmds’ 
function in R.

Recombination. For estimation of LD, phased markers with accurate heterozy-
gote calls are required. The distribution of depth of coverage (Supplementary 
Fig. 11) showed that most GBS markers in our panel had a depth of exactly 
1, with half of the markers having a depth equal to or greater than 2. In the 
absence of phase or sufficient depth for all sites, we estimated an LD-like 
statistic using the non-imputed SNP markers. To account for lack of phase 
information and heterozygote under-calling, our LD-like statistic estimates 
the correlation between homozygous markers at 100-site non-overlapping 
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windows with the LD function on the software TASSEL. For GBS markers, we 
found that this was the smallest window size with informative correlations. 
We were interested in significant increases in LD that affected large regions 
on multiple individuals across populations. Therefore, we aggregated the cor-
relations into 1-Mb regions by taking the median value. For comparing the 
LD and recombination values, we estimated the correlation at 1-Mb sliding 
windows between (i) the log10(median LD estimate), (ii) the log value for the 
median cross-over probabilities estimated using the American and Chinese 
NAM populations24, and (iii) the log of the median population recombina-
tion rates (rho) estimated both for improved lines and landraces Hapmap2 
project24. Our LD estimates displayed a negative correlation with gene den-
sity (r = −0.57) and NAM cross-over probability8 (r = −0.45). We observed a 
modest negative correlation (r = −0.33) between our LD-like statistic and a 
population genetic estimate of historical recombination (rho)24,25. High-LD 
regions were defined based on the change in slope of the global median LD 
(Supplementary Fig. 12). High-LD regions, therefore, were those segments 
that had a median LD > 0.01. In total, there were 256 high-LD regions encom-
passing 7.8% of the genome. Of the candidate genes, only PhyB1 (phyochrome 
B1), Gl15 (Glossy15) and ZCN13 were in the high-LD set and were, therefore, 
excluded from further gene-level analyses.

Flowering time genome-wide association and genomic prediction. 
Association analysis was performed in two steps for all trials using a linear 
mixed model49,50. For each trait (days to male and female flowering) two mod-
els were fitted, one with the trait ‘best linear unbiased predictions’ (BLUPs) as 
a response variable and another one with the standardized values of the same 
BLUPs. Although the use of cumulative heat units in the form of growing 
degree days can be used to standardize crop phenology data sets across loca-
tions, the standardization used consisted of subtracting the mean value of the 
trial and dividing by the corresponding s.d. This was done to assess the consist-
ency of the results given the uneven variances for the trait across the various 
trials. Correlation between P values from both GWAS models was 0.84.

The first step models included the fixed effects for trial (categorical), popu-
lation structure in the form of ten MDS weights (numerical) that together 
explained around 13% of the genetic variances and 10.6% of the phenotypic 
variances, and the effect of the hybrid used as parent for each accession’s cross. 
The random effect of relatedness was added to both models in the form of 
a kinship matrix. The kinship matrix was estimated using the same subset 
of SNPs as the MDS weights. The mixed model was fit using the R package 
EMMREML. The vectors containing the residuals after fitting the first models 
were fitted in the second step models as a response variable for the single-
marker analysis. Models were fitted using R, with the marker nested within 
the levels of the trial.

The model equation used was 

Y T H Q Zijk i ij ijk u ijk= + + + + +m e

where Yijk is the response variable, µ is the overall mean, Ti is the effect of 
the i-th trial, Hij is the effect of the j-th tester at each i-th trial, Qijk is the 
population-structure effect containing ten weights from MDS, Zu, where u 
is a vector of size n (number of individuals) for unknown random polygenic 
effects, which have a distribution with mean of zero and covariance matrix of 
G = 2Kσ2

a where K is the co-ancestry matrix with element kij (i,j = 1,2,…n) 
calculated from 30,000 random SNPs, and εijk is the vector containing the 
residual error.

In the second step of the association model, the residuals from the first 
model were fitted as a response variable in the following model 

Y S ti i= [ ]+ e

Where Yi is the residual from the previous model and S is the SNP effect that 
is nested within trial t. The model uses an F-test for the null hypothesis stat-
ing that the effect of each SNP is 0 in all trials. The alternative hypothesis is 
that the SNP has an effect on any trial. The reason for testing this hypothesis 
is that the effect of each SNP can, and often does, change on value and direc-
tion. This is a consequence of the segregation of alleles at different frequencies 
across all trials, as well as the change of phase between the tested SNPs with the 

causal polymorphisms. We observed significant deviation from the expected 
distribution of P values (Supplementary Fig. 13); therefore, to account for 
the false discovery rate, we only consider as significant the top 1% of the 
SNPs based on P value, which all had −log10(P values) > 18. We reasoned 
that significance at candidate genes would depend on local LD and genotype 
coverage; therefore, a higher proportion of significant SNPs around candidate 
genes would be indicative of association at the gene itself rather than at the 
entire LD block or because of higher genotype coverage. On that account, we 
looked at significantly associating SNPs within a region 50-kb upstream and 
downstream of candidate genes, and assigned SNPs to the nearest genes using 
the R package GenomicRanges51.

Genome-wide prediction was performed with the software GAPIT52. The 
models were run for each trial, and accuracy was measured by performing 
fivefold cross-validation in ten replicates for each trial. Two models were run 
for each trait and trial. One model used a kinship matrix that was estimated 
with one SNP for each of the 888 associated genomic regions, another model 
used 714 evenly distributed random SNPs, and a third model used 30,000 
random SNPs for the estimation of the kinship matrix. All models included 
ten MDS weights to account for population structure.

Genome-wide association with altitude and latitude. We were interested in 
understanding the genomic regions that contributed both to flowering-time 
variation and to altitude and latitude adaptation. We performed genome-wide 
association using a generalized linear model with altitude and latitude as 
response variables and markers, filtered at 1% frequency, as explanatory vari-
ables. Consistent with other mapping studies using geography as a response 
variable in association studies, models with covariates for population structure 
in the form of principal-component weights, and mixed linear models includ-
ing either only a kinship matrix or both the kinship and principal component 
weights, showed very limited association (Supplementary Fig. 14). This was 
mainly due to the high covariance between local adaptation and population 
structure, given that selection for local adaptation leads to population struc-
ture. This means that models accounting for local adaptation decrease the 
false-positive rate but also significantly increase the false-negative rate. To 
reduce the false-positive rate from the results of the generalized linear model 
and to establish a biologically meaningful significance threshold using addi-
tional independent information, we estimated the overlap rate using the most 
significant flowering time GWAS SNPs. The overlap rate was defined as the set 
of overlapping SNPs between the shared male and female top flowering-time 
SNPs and either altitude or latitude, divided by the union of the sets across 
significance thresholds. In other words, assuming that flowering-time-asso-
ciating SNPs represented our current best candidate for true positives, the 
overlap rate was used to maximize true positives at P-value threshold values 
that minimized false negatives. Therefore, the overall rate was estimated for 
the percentiles ranging between 0.001 and 0.010. For example, for the first 
quantile threshold (0.001), the overlap rate for altitude corresponds to the 
number of SNPs at the top 0.001 quantile (around 500) that overlap with the 
top 5,000 flowering-time SNPs, divided by the sum of the flowering-time 
SNPs and the altitude SNPs at that quantile. The significance thresholds cho-
sen from the overlap rate results (Supplementary Fig. 5) were the 0.005 per-
centile for altitude (the top 0.5% of the associating SNPs, −log10(P values) >  
208.2; Supplementary Table 6) and the 0.01 percentile for latitude (top 1% 
of associating SNPs −log10(P values) > 61.63; Supplementary Table 7). It can 
be observed in Supplementary Figure 5 that across the same quantile val-
ues, altitude has significantly higher overlap with flowering-time-associating 
SNPs, as compared to that with latitude, probably due to the landraces coming 
mostly from non-photoperiod-inducing locations. SNPs are associated with 
gene models based on distance using the R package GenomicRanges51, and 
because GBS SNPs were enriched at gene regions, the average distance to gene 
model was 0. For each gene, the most significant SNP was chosen based on 
distance in base pairs. Heritability estimates were 0.88 for altitude and 0.85 
for latitude, estimated using LDAK53 with a single kinship matrix, estimated 
with all the imputed markers, and the matrix was estimated from the algorithm 
implemented in GCTA54.

Analyses of structural variants. To infer the underlying haplotypes for the 
centromeres of chromosomes 3,5 and 6, as well as Inv4 and the high-LD region 
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on chromosome 3, we first estimated a genetic distance matrix for each locus 
using the non-imputed markers. The distance matrices were then analyzed 
using MDS. In the complete absence of recombination, the dimensional 
reduction of the genetic-distance matrix yielded distinct clusters that cor-
responded to the homozygote alleles and the corresponding heterozygotes. 
The centromere of chromosome 5 segregates in the landraces with three dis-
tinct homozygous haplotypes and their corresponding heterozygote pairs. 
The region around the centromere of chromosome 6 was 12 Mb in size, and 
included the centromere and a large pericentromeric region that expanded out 
in both directions; it displayed a similar pattern to the centromere of chromo-
some 5. However, allele calls were not done due to incomplete clustering of 
homozygote and heterozygote classes, probably reflecting recombinant haplo-
types. The centromere of chromosome 3 displayed a more complex pattern of 
distance than the other two associating centromeres, likely due to the presence 
of more than three segregating haplotypes. For Inv4, we observe two distinct 
alleles and the heterozygote. We observed that the allele was fixed in many of 
CIMMYT-improved lines (Supplementary Table 8), including those used as 
parents for the highland test crosses in the present experiment.

Expression across tissues. We used the transcription data from the maize 
atlas55 for the following 11 tissues: embryo 16 d after pollination, endosperm 
16 d after pollination, primary root 6 d after silking, tip of stage 2 leaf at the 
V5 plant stage, base of stage 2 leaf at the V5 plant stage, 13th leaf at the V9 
stage, 13th leaf at the R2 stage, silk, anthers, immature cob at the V18 stage, 
4th internode at the V9 stage, and the stem and shoot apical meristem at the 
V4 stage. We used the standardized expression values and estimated, for each 
gene, the tissue in which each gene had the highest expression. We then per-
formed a chi-squared test comparing the global expression pattern for each 
tissue with either the the list of candidate genes or the list of all associating 
genes. P values were adjusted using the false discovery rate method, with 
candidate genes showing an enrichment at the immature cob with an adjusted 
P value of 2.42 × 10−18.

Code availability. All of the code written is available upon pull request from 
github. The EMMREML package used for the mixed model is available at 
http://cran.r-project.org/web/packages/EMMREML/index.html. For the 

map in Figure 2, the package maps (maps: Draw Geographical Maps. R pack-
age version 3.1.1.) was used (https://CRAN.R-project.org/package=maps).  
The original Maps S code was written by Richard A. Becker, Allan R. Wilks. 
R version by Ray Brownrigg. Enhancements were made by Thomas P Minka 
and Alex Deckmyn. (2016). Figures 2 and 3 were produced using the R ggplot2 
package56 (http://ggplot2.org).

Data availability statement. The data that support the findings in the study 
are available from the following repositories: GBS non-imputed markers: 
http://hdl.handle.net/11529/10034; GBS imputed markers: http://hdl.handle. 
net/11529/10035; Phenotypic and passport data can be accessed upon  
registration at http://germinate.seedsofdiscovery.org/maize/.
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In the version of this article initially published online, the name of author Martha Willcox was misspelled as Martha Wilcox. The error has been 
corrected in the print, PDF and HTML versions of this article. 
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