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Abstract 

Motivation 
Pangenomes provide novel insights for population and quantitative genetics, genomics, 

and breeding not available from studying a single reference genome. Instead, a species is better 
represented by a pangenome or collection of genomes. Unfortunately, managing and using 
pangenomes for genomically diverse species is computationally and practically challenging. We 
developed a trellis graph representation anchored to the reference genome that represents most 
pangenomes well and can be used to impute complete genomes from low density sequence or 
variant data. 

Results 
The Practical Haplotype Graph (PHG) is a pangenome pipeline, database (PostGRES  & 

SQLite), data model (Java, Kotlin, or R), and Breeding API (BrAPI) web service. The PHG has 
already been able to accurately represent diversity in four major crops including maize, one of 
the most genomically diverse species, with up to 1000-fold data compression. Using simulated 
data, we show that, at even 0.1X coverage, with appropriate reads and sequence alignment, 
imputation results in extremely accurate haplotype reconstruction. The PHG is a platform and 
environment for the understanding and application of genomic diversity. 

Availability 
All resources listed here are freely available. The PHG Docker used to generate the 

simulation results is https://hub.docker.com/ as maizegenetics/phg:0.0.27. PHG source code is at 
https://bitbucket.org/bucklerlab/practicalhaplotypegraph/src/master/. The code used for the 
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analysis of simulated data is at https://bitbucket.org/bucklerlab/phg-manuscript/src/master/. The 
PHG database of NAM parent haplotypes is in the CyVerse data store (https://de.cyverse.org/de/) 
and named 
/iplant/home/shared/panzea/panGenome/PHG_db_maize/phg_v5Assemblies_20200608.db. 

Contact 
pjb39@cornell.edu 

Introduction 
 
Individuals within a species or population can vary considerably for genome content. A 

single reference genome often inadequately represents that diversity. As a result, a system for 
organizing and using information from multiple genomes would be very useful. Several groups 
have shown that pangenome graphs can effectively represent genomic diversity (Eizenga et al., 
2020; Llamas et al., 2019; Rakocevic et al., 2019). Most of that work has been done with human 
genomes. Other species, especially plant species, have more complex and diverse genomes, with 
an order of magnitude more active transposons, making the direct application of pangenome 
graphs developed for humans difficult (Llamas et al., 2019). For example, comparisons of maize 
sequence estimate that 40% to 50% of the genome is not alignable between pairs of inbred lines 
(Brunner et al., 2005; Sun et al., 2018). In contrast, a study of 910 humans found that total 
unalignable sequence from all individuals equaled about 10% of the genome (Sherman et al., 
2019) while an earlier study of an African and an Asian genome found about 0.2% of the 
genomic sequence of each individual absent from the human reference genome (Li et al., 2010). 

The Practical Haplotype Graph (PHG) differs from other graphical approaches in the way 
that it handles larger scale variation. Specifically, because retroelements dominate many plant 
genomes (Baucom et al., 2009; Bennetzen, 2000), intergenic regions often align poorly between 
different individuals. In addition, plants generally have numerous but compact genes with 
recombination focused near them (Schnable et al., 1998; Rodgers-Melnick et al., 2015). The 
genes are broadly shared between individuals, while intergenic regions are far more divergent. 
These features suggest dividing regions of the genome into genic and intergenic intervals. A 
second element, which arises from coalescent processes and from bottlenecks introduced by crop 
breeding, is that haplotypes for these intervals tend to be diverse but limited in number, 
especially within breeding programs. 

This paper introduces the PHG, which represents genomes as sequences of haplotypes 
rather than nucleotides and uses a simplified approach for dealing with structural variation. The 
PHG encapsulates a relational database for storing sequence and alignment information, software 
for building and using that database, and pipelines that employ widely used third-party software 
for some of those tasks. The PHG software and database schemas are open-source and freely 
available. They are distributed as a Docker image to simplify the task of installing the 
environment needed. 

While the PHG supports a range of genomic analyses, it is also designed to be a useful 
tool for breeding programs. As such it provides methods to impute genotypes based on the 
haplotypes stored in the database using low coverage sequence or single nucleotide 
polymorphisms (SNPs) as input. It also divides the genome into genic and intergenic haplotypes, 
which are biologically interesting units likely to have a limited number of common haplotypes. 
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The input sequence can be a whole genome sequence generated from a random shear library or 
sequence based on reduced representation libraries created by a variety of methods. 
Alternatively, SNP calls themselves can be used to impute the haplotypes carried by an 
individual, though most of the description below refers to the use of short read sequence to 
impute haplotypes and genotypes. That flexibility allows a user to choose a sequencing 
methodology based on cost and to change methods or suppliers over time as logistics dictate. It 
also provides a method for translating historical genotypes from various methods onto a common 
platform. Because the low coverage sequence is used to impute a path through the graph, it 
results in a list of imputed haplotypes. Storing the haplotype lists in the PHG database results in 
very compact storage of a large number of genotypes in a single database. Downstream analyses 
can either use VCF files of imputed nucleotide variants or use the haplotypes directly as multi-
allelic loci. 

 

System and methods 
 
The PHG is a trellis graph that represents discrete genomic DNA sequences and 

connections between them (Figure 1). A haplotype is defined as the sequence of part of an 
individual chromosome. A reference range is a segment of the reference genome. A node in the 
graph represents one haplotype for one reference range. Two physically adjacent nodes are 
connected by an edge, which does not have an associated sequence but only indicates whether 
two haplotypes (might) occur together in some individuals. If a graph is built from a subset of 
ranges, for example genic ranges only, it does not contain any information about the excluded 
ranges. A haplotype graph is then a collection of nodes and edges. Nodes for a single range can 
be thought of as multiple alleles at a single position. 

 
Figure 1. Diagram of a Practical Haplotype Graph (PHG). Imputation uses emission 

probabilities from the nodes and transition probabilities from the edges. 
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The PHG database (Supplementary Figure 1) stores all the data necessary to build a 

haplotype graph, which exists only in computer memory. The data behind the graph is persistent, 
while the graph is not. The first step in creating a PHG database defines the reference range 
endpoints and assigns reference ranges to user-defined groups. One useful strategy defines the 
endpoints from gene boundaries. The reference ranges containing genes are assigned to one 
group and the intergenic ranges to another group, which together cover the entire genome. After 
that, the reference genome is loaded followed by haplotypes from other individuals. 

The basic steps to populate the PHG database include importing the reference range 
endpoints, loading the reference sequence, creating additional haplotypes, and making consensus 
haplotypes. Figure 2 provides an overview of the process used to populate the database after the 
reference genome and reference ranges have been set up. The additional haplotypes can be 
created from assemblies by aligning those to the reference genome or from whole genome 
sequence (WGS). Haplotypes should be loaded from enough individuals to populate the database 
with the common haplotypes present in the target population. Once the haplotypes have been 
loaded, skim sequence can be used to impute additional genotypes. The resulting information is 
stored in the database in a compressed format.  

 

 
Figure 2. Building a PHG database 
 
The process of creating haplotypes involves aligning sequence to the reference genome, 

but the method and results are different depending on whether assembled genomes or WGS are 
used. In the case of WGS, only sequence that aligns well to a single location on the reference 
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genome is used to create haplotypes. For many species, such as maize, WGS data provides good 
haplotype coverage for genic reference ranges but not for many of the intergenic ranges, which 
often do not align well. For example, in any two maize inbreds, large segments of intergenic 
ranges can carry completely different sequences. With an assembly, if two adjacent genes can be 
aligned to reference, the intervening sequence can be assigned to the intergenic reference range 
even if the intergenic sequence itself does not align, but with WGS unaligned sequence is not 
assigned to a haplotype. 

Once a PHG database has been populated with haplotypes, it can be used to impute 
genotypes from skim sequences or SNPs (Supplementary Figure 2). Any new sample can be 
represented as a collection of haplotypes already present in the PHG. The model used for 
imputation is very similar to the Li and Stephens model (Li and Stephens, 2003), which views 
genotypes as composed of segments from reference or ancestral haplotypes. 

The method used by the PHG for imputation differs from most other imputation software 
in one key way. It can use either SNP calls or raw sequence reads as input. Most other software 
starts with SNPs, often considered to be assayed with low error. PHG imputation can start with 
raw sequence reads and use those directly to tag haplotypes. It does so by aligning those reads to 
the PHG pangenome, identifying which haplotypes match each read, then using that information 
together with the information about which nearby haplotypes appear on the same chromosome to 
determine which set of haplotypes is most likely to have generated the observed reads. 
Alternatively, SNPs from any genotyping method can be used to tag haplotypes. A hidden 
Markov model (HMM) uses the resulting read mapping counts to impute the most likely path 
through the haplotype graph. The results are stored as a list of haplotype ids. More information 
about the alignment software used to build the PHG and to impute paths, imputation details, and 
the database schema can be found in the supplementary methods. 

 
Software Architecture and Distribution 

The PHG software is a combination of custom code written using Java and Kotlin (a 
modern JVM language), third-party software, and a set of helper scripts. The main PHG 
functions have been organized as plugins based on the TASSEL 5 plugin architecture as 
described on the TASSEL wiki (https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Home). 
The primary reasons for using the plugin architecture are that it provides a consistent API, which 
can be called from a command line or from the TASSEL GUI, and is self-documenting. The 
custom code is freely available, open source, and distributed with TASSEL 5 as phg.jar. 

All of the steps in the PHG pipeline can be run with individual plugins from a command 
line. Because running the PHG with a production database typically requires a large amount of 
RAM (> 50GB for some steps) and uses multiple CPUs, it has been designed to run on a server 
using terminal commands. The database connection parameters must be stored in a configuration 
file. Parameters for individual plugins can be specified on the command line or included in the 
configuration file. Because the pipeline is complex and overall has more than one hundred user-
settable parameters, it has been organized into a few pipeline plugins covering the entire process 
from building the database, populating it with haplotypes, and imputing genotypes. The pipeline 
plugins, individual components and sample configuration files are all documented at the PHG 
wiki (https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home) along with directions 
for creating an example database for testing 
(https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/UserInstructions/ExampleDatabas
e.md). 
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The PHG is deployed as a Docker image. Each Docker image contains a snapshot at a 
particular point in time of the software used for processing. As new versions of a dockerized 
image are created, the older versions remain available on docker hub 
(https://hub.docker.com/r/maizegenetics/phg). This makes it easy for users to replicate analyses 
using a specific version of the complete software environment. 

In addition to the command line API, we provide two additional API’s. An alternative 
interface to the PHG that provides useful methods for examining and analyzing the contents of a 
PHG database is rPHG, implemented as a package for the statistical programming language R. 
PHG objects are built and stored in the R environment using the PHG API along with a Java to R 
interface (https://CRAN.R-project.org/package=rJava). Details about downloading and running 
rPHG as well as source code can be found on Bitbucket 
(https://bitbucket.org/bucklerlab/rphg/wiki/Home). 

Another API available with the PHG is a Breeding API (BrAPI) (Selby et al., 2019) 
compliant web service written using Ktor (https://ktor.io). Ktor is a framework for creating web 
applications using the Kotlin programming language. BrAPI is a specification for a RESTful web 
service for sharing plant breeding data. Specifically, the PHG web server implements the subset 
of BrAPI calls that support genotype information. Any breeding or genetics application that 
implements the BrAPI V2 standard for genotypes will be able to access data from PHG 
databases connected to a web service. Because the PHG BrAPI web server is under active 
development, no public server instances are available at this time. 

 

Results and Discussion 
Important features of a pangenome representation include efficient data compression and 

the accuracy of derived analyses like imputation. Using simulated data in maize, we evaluate 
these two characteristics of the platform. Empirical studies are already available using earlier 
versions of the pipeline (Jensen et al., 2020; Valdes Franco et al., 2020; Jordan et al., 2021; 
Long et al., 2021). To evaluate performance, we use the maize PHG with 26 high quality 
assembly genomes and low density GBS data on 5,000 recombinant inbred lines derived from 
those lines. The maize reference genome is 2.3Gbp in size. 
 
Alignment Performance 

The initial building of the PHG from assemblies requires the alignment of high-quality 
genomes to the reference genome. Adding new assemblies to the PHG takes 7-8 CPU hours with 
two-thirds of the time used by the MUMmer4 alignment process. While this whole process can 
be parallelized, it is limited by the speed and sensitivity of tools like MUMmer. 

The PHG still relies on standard high-performance aligners such as minimap2 in order to 
map reads for path imputation. To estimate the speed and memory requirements, we compared 
reference genome (2.3Gbp reference) alignment with alignment to a PHG with 26 genomes. The 
RAM requirements increased by a factor of 4.4 from 34Gb to 150Gb , while the processing time 
only increased 2.3-fold. While the memory requirements are substantial, processing is efficient 
given the 26-fold increase in the search space. 
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Data Compression 
A key aim of the PHG database is to efficiently store and represent genomes in terms of 

disk and in-memory space. Most of the storage space used by the PHG database consists of four 
types of data: haplotype sequence, haplotype variants, read mapping counts, and imputed paths. 
The data types vary greatly in storage space use as compared to alternative formats for similar 
data.  
Haplotype sequence: Haplotype sequence for assemblies is stored as compressed strings; the 
amount of disk space used is similar to compressed FASTA files for the same assemblies. 
Haplotype variants: The variant data for maize assemblies aligned with MUMmer4 uses about 
80% as much space as the files output by MUMmer4. 
Read mapping counts: The space used by read mappings varies depending on the type and 
coverage of the data used to generate them as well as the number of haplotypes to which they 
were aligned. Aligning 30 million simulated reads (3Gb Fastq file) against a 26-genome maize 
PHG would normally produce a 50Gb BAM file. However, recording only the counts of best 
haplotypes combinations results in a 69Mb file (43-fold smaller than initial fastq, and 724-fold 
smaller than the BAM file). 
Imputed path: A single imputed path uses about 250KB of database storage, whereas a gzipped 
gvcf generated from homozygous PHG paths for a maize PHG requires about 176Mb per 
sample, a 704-fold difference. A major advantage of the PHG is that it can store a large number 
of fully imputed genomes very efficiently. In large panels of germplasm such as 4,705 NAM 
RILs, even if we only write the SNPs to a standard VCF file, the haplotype representation is 
roughly 1000-fold smaller. 
 

Haplotype Mapping Accuracy 
Imputing haplotypes and SNPs for a large number of samples using a pangenome 

containing related germplasm is a central goal of the PHG. PHG imputation performance 
requires that sequencing reads are accurately mapped to haplotypes in the PHG. While short read 
alignment accuracy is a problem for all genomics, it can be a larger problem in massive 
pangenomes with redundant low copy sequences. To evaluate mapping performance, we 
simulated reads generated from haplotype sequence stored in the PHG database for the inbred 
NAM parents B73, CML247, and Oh43. After those reads were mapped back to all 26 genomes 
in the database, we asked whether each read mapped to the sequence from which it came. 
Because most reads align to more than one haplotype, if the read mapped to the haplotype of the 
line from which it came, it was counted as a correct mapping even if it mapped to other 
haplotypes as well. A read that did not map to the haplotype from which it was drawn counted as 
mapping incorrectly. Testing whether reads generated from one of the assemblies map back to 
the originating assembly is an important test of a pangenome system. 

We found accuracy was most sensitive to read types, how haplotypes were collapsed, and 
minimizer redundancy. Specifically, using paired-end reads improved accuracy three to sixfold 
over single-end reads across a range of collapsing approaches (Figure 3). This increase in 
accuracy is the result of paired-end reads mapping more accurately to paralogous 
retrotransposons, as the advantage of paired-end reads was smaller in genic regions 
(Supplementary Figure 3) than in the genome as a whole. Increasing minimizer redundancy 
improved the accuracy of single-end reads more than the accuracy of pair-end reads, again 
because of improvement in mapping to repetitive regions (Figure 3).  
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Figure 3.  Effect of parameters on accuracy. A) Read mapping error rate for the whole genome 
as a function of the maximum diversity (mxDiv) parameter for determining consensus 
haplotypes, read type (paired-end, single), and distance matrix method (kmer, SNP). Read 
mapping error rate is the number of reads not mapping to the target haplotype divided by the 
total number of reads. NA labels the result of mapping against the original, non-consensus 
haplotypes. B) Imputed SNP error rate for paired and single-end reads for different values of 
the diversity cutoff and consensus method. Error rate equals the number of wrong SNP calls 
divided by the number of base pairs of sequence. Where the B73 bar is absent, the error rate 
was zero. C) Read mapping error as a function of minimizer redundancy controlled by the 
minimap2 f-parameter. f parameter values are a) f1000,5000 [default]; b) f5000,6000; c) 
f10000,11000; d)15000,16000; e) f20000,21000; f) f25000,26000. mxDiv = 1e-4. 

 
The size of the entire pangenome can be reduced by collapsing similar haplotypes. 

Haplotypes can be collapsed using divergence measured either by SNP or kmer similarity. The 
kmer based approach, which is alignment free but slower, detects both SNP and indel differences 
between haplotypes. Overall the kmer based approach was more robust and decreased mapping 
error by roughly 1.7% across the entire genome (Figure 3) and 15.8% in genic regions 
(Supplementary Figure 3). While more extreme collapsing of haplotypes (mxDiv=0.001) 
increased error, the pipeline was insensitive to changes when mxDiv was below 0.00001. There 
was substantial bias at high levels of collapsing (mxDiv=0.001) because of the way a haplotype 
is chosen to represent a cluster. The assemblies in the database are ranked by quality and the best 
quality haplotype is chosen to represent a cluster. For the simulation, the rank order was B73 > 
CML247 > Oh43, which resulted in better accuracy for the higher ranked assembly (B73). With 
SNP based distance, but not kmer based distance, that bias persisted at lower collapsing levels 
because haplotypes with no SNPs but with indels were collapsed whereas with kmer similarity 
only identical haplotypes were collapsed. As a result, kmer based distance should be the 
preferred method for collapsing haplotypes. 
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Alignment accuracy was also impacted by tuning the way the aligner (minimap2) handles 
highly repetitive sequences. Aligners frequently purge highly repetitive kmers or minimizers 
from their lookup tables in order to maintain performance. This can be problematic in 
pangenomes. For the data presented here, we aligned against 26 genomes at the same time. Not 
only was the sequence repeated within genomes, it was repeated across them as well. In 
minimap2, the f-parameter determines which minimizers are used for alignment. When f has an 
integer value, then minimizers with more than f occurrences are not used. Because the default f-
parameter was not optimal, mapping accuracy could be improved by nearly twofold with higher 
f-parameters settings (Figure 3). For paired-end reads with collapsed haplotypes, the default f-
parameter was sufficient. Overall, read mapping errors were minimized with kmer based 
collapsing, an increase in the f-parameter, and use of paired end sequencing. 
 
Haplotype Imputation Accuracy 
 For a set of read mapping counts, a hidden Markov model (HMM) finds the path through 
a haplotype graph that best explains the observed data. We tested the impact of the read type, 
minimap’s f-parameter, and haplotype collapsing approach on the haplotype error rate 
(Supplementary Figures 4 & 5). Haplotype error rates were about sevenfold lower on average 
than the mapping error rates, which shows that the HMM model corrects many of the 
mismapping errors. Paired-end reads performed better than single end reads, but changes in f-
parameter, diversity cutoff, and distance method had little impact. The increased error rate for 
non-consensus haplotypes compared to consensus haplotypes is misleading because, prior to 
collapsing, the HMM may have chosen a haplotype that was identical to the read source but from 
a different parent taxon. Overall, the HMM identified haplotypes with error rates as low as 0.1%. 

While reconstructing the ancestral haplotype is useful in closed breeding pools and for 
some applications, generally users are most interested in imputing variants correctly. At the SNP 
level, the error rates approach one in a million under a range of realistic conditions for read types 
and haplotype collapsing (Figure 3). In a closed population as simulated here, error rates 
approach zero if the PHG is tuned appropriately and using appropriate read types. While 
validating the platform and providing insight into the parameters, this simulation did not test the 
effect of genotyping errors or imputing individuals not used to build the database. These issues 
were addressed by evaluating the PHG with real data. 

  
Empirical Studies 

Other studies describe and evaluate the use of a PHG for sorghum (Jensen et al., 2020), 
maize (Valdes Franco et al., 2020), wheat (Jordan et al., 2021), and cassava (Long et al., 2021). 
The sorghum project used WGS data for 24 inbred lines at an average 8x coverage to populate a 
database with haplotypes. Imputing a set of lines mostly derived from the 24 inbred lines 
produced SNP calls that were nearly the same as a GBS-specific pipeline and as effective for 
genomic selection. The maize study used the same database that was used for the simulation 
reported here. Genotypes were imputed from GBS sequence reads for over 5,000 NAM 
recombinant inbred lines (RILs) resulting in an average genotype error rate less than 0.01. The 
wheat PHG was built from the exome capture data of 65 diverse wheat lines. Exome capture, 
GBS, and skim sequence data was used to accurately impute the genotypes of a panel of lines. 
The cassava paper used haplotypes derived from runs of homozygosity in otherwise 
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heterozygous cassava lines to populate a PHG and showed that the resulting PHG could be 
successfully used to impute genotypes from 1X coverage skim sequence. Taken together these 
studies show that the PHG can be used with a variety of data sources and species. 

 
Conclusions and Future Directions 

The PHG is currently a powerful tool for storage, retrieval, and imputation of haplotypes 
that can be used for both genomics and breeding. It is already being used to merge the results of 
diverse genotyping platforms to construct unified databases for entire species. Specifically, the 
PHG will be a useful tool for breeding programs for merging historic genotyping data generated 
from multiple methods, for switching genotyping to low cost providers, and for tracking 
haplotype selection across generations. A current limitation is that accuracy of particular portions 
of paths is not estimated, which is especially important when samples with new haplotypes are 
being analyzed. Statistics derived from the alignment and HMMs in conjunction with machine 
learning should be able to estimate path accuracy for individual reference ranges. 

The “practical” in PHG refers to the decision not to construct a complete variant graph 
because that construction is very difficult for genomes with large numbers of active 
retrotransposons. Instead, in the case of assemblies the retrotransposons are assigned reference 
positions based on nearby alignable sequence or, for WGS-based haplotypes, simply not used 
when they cannot be aligned. Additionally, since recombination is substantially focused within 
genes or near their open chromatin flanks, a haplotype graph divided at the edges of shared genes 
provides a reasonable compromise between capturing ancestral haplotypes and recombination. 
Finally, this practical representation allows the use of powerful aligners such as minimap2 to 
impute PHG paths from short or long reads. In the future, we see the potential to evolve the PHG 
into a graph of graphs by modeling each reference range with a variant graph (Garrison et al., 
2018).   

In the plant breeding community, BrAPI (Selby et al., 2019) is becoming widely accepted 
as a standard for sharing genotypic and phenotypic data across systems and analysis tools. 
Because the BrAPI standard for sharing large genomic dataset is under development and because 
the PHG DB can serve as a repository for genomic data with up to 1000-fold data compression, 
we are working with the community to improve variant and haplotype graph support in BrAPI 
version 3. 

Visualization and tools to work with haplotype graphs are still in their infancy, but as 
APIs become more robust and standardized, a wide range of tools in bioinformatic languages 
such as R and Python will need to be developed. The development of tools that allow diversity to 
be accurately represented and functional variation to be identified can help drive both basic and 
applied research into natural variation. 
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