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Rice (Oryza sativa L.) is a staple food for more than half of the 
world population. Rice landraces have evolved from their wild pro-
genitor under natural and human selection, leading to the main-
tenance of high genetic diversity1,2. These cultivated varieties also 
have a high capacity to tolerate biotic and abiotic stress, resulting 
in highly stable yields and an intermediate yield under a low-input 
agricultural system. Identifying the genetic basis of these diverse 
varieties will provide important insights for breeding elite varieties 
for sustainable agriculture.

GWAS have emerged as a powerful approach for identifying 
genes underlying complex diseases at an unprecedented rate3–6. 
However, despite their promise, GWAS have largely not been 
applied to the dissection of complex traits in crop plants7–9. This 
is due mainly to the lack of effective genotyping techniques for 
plants and the limited resources for developing high-density hap-
lotype maps like those seen in other well-developed systems, such 
as the human genome HapMap project3,4. Rice is an ideal candidate 
system for the application of GWAS because it is self-fertilizing 
and has a high-quality reference genome sequence10 and pheno-
typing resources. Such a system should permit the identification of 
high-quality haplotypes necessary to accurately associate molecu-
lar markers with phenotypes.

Here we have genotyped rice landraces through direct resequencing 
of their genomes by adopting sequencing-by-synthesis technology, 
which represents a step forward from the oligonucleotide array 
technology widely used for GWAS11–13. More than 500 diverse rice 
landraces, representing a large collection of rice accessions, were 
sequenced at approximately onefold genome coverage. The resulting 
data set captures more of the common sequence variation in culti-
vated rice than any other data set to date. Using a highly accurate 
imputation method, we constructed a high-density rice haplotype 
map and performed GWAS for 14 agronomic traits to identify a sub-
stantial number of loci potentially important for rice production and 
improvement. Some loci were mapped at close to gene resolution,  
indicating that GWAS of rice landraces could provide an effective 
approach for gene identification.

RESULTS
Genome sequencing and SNP identification
From a collection of ~50,000 rice accessions originating in China, 
we have undertaken an effort to build a large sample of morphologi-
cally, genetically and geographically diverse landraces for genetic 
studies. In this study, a total of 517 landraces were selected and 
comprehensively phenotyped (see Online Methods). We genotyped 
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these landraces with approximate onefold-coverage genome 
sequencing using a barcoded multiplex sequencing approach14 on 
the Illumina Genome Analyzer II (Supplementary Table 1 and 
Supplementary Fig. 1). Three additional cultivars with accurate 
genome sequences were also sequenced as internal controls for 
evaluating sequence accuracy (Supplementary Note). More than 
2.7 billion 73-bp paired-end reads were generated. In total, all 
sequences used for SNP calling comprised ~508-fold coverage of 
the rice genome.

Sequence reads were aligned to the rice reference genome for SNP 
identification. We used the alignment of reads to build consensus 
genome sequences for each rice accession, with a series of filtering 
criteria that eliminated sequencing and mapping errors (see Online 
Methods and Supplementary Note for details). The resulting consen-
sus sequence of each rice accession covered 27.4% of the reference 
genome on average (ranging from 12.0% to 46.7%). Comparisons 
of the consensus sequence against bacterial artificial chromosome 
(BAC) sequences and high-coverage Illumina data showed that the  
sequence specificity reached 99.9% (Supplementary Table 2).  
The SNP calling procedure was then based on discrepancies between 
the consensus sequence and the reference genome. After exclusion of 

singleton SNPs, the SNP calling error rate was 
reduced to 2.7% (Supplementary Fig. 2 and 
Supplementary Table 3). A total of 3,625,200 
nonredundant SNPs were identified, resulting 
in an average of 9.32 SNPs per kb, with 87.9% 
of the SNPs located within 0.2 kb of the near-
est SNP (Supplementary Fig. 3a). About 78% 
of all SNPs were found in intergenic regions; 
of the remaining SNPs, the largest number 
were in introns of annotated genes, followed 
by coding regions and untranslated regions 
of annotated genes (Supplementary Fig. 3b). 
The chromosomal distribution of the SNPs 
is shown in Supplementary Figure 3c.  
Despite the high density of our SNP map, 
however, the recall rate (the rate at which all 

actual SNPs are recalled) was 20.1%. This was probably due to uneven 
sampling of short reads from low-coverage sequencing and the com-
plexity and repetitiveness of the rice genome.

To gain insights into potential functional effects of the detected SNPs, 
we further analyzed the SNPs in coding regions. A total of 167,514 SNPs 
were found in the coding regions of 25,409 annotated genes with transcript  
support (RAP2 database). We also found 3,625 large-effect SNPs 
(SNPs representing mutations predicted to cause large effects). 
Supplementary Table 4 lists the types of predicted effects of annotated 
SNPs. Among the annotated genes, 107 genes were over-represented 
for large-effect changes, which may indicate that these are incorrect 
gene annotations or pseudogenes (Supplementary Table 5). Moreover, 
we observed that 11 gene families showed significantly higher ratios of 
nonsynonymous to synonymous changes (P < 0.01), which may reflect 
positive or relaxed selection (Supplementary Fig. 4). These include 
genes encoding NB-LRR proteins, which are known to be involved in 
disease resistance.

Population structure and geographic differentiation
The phylogenetic relationships of the 517 selected Chinese rice 
landraces were determined using the genetic distances calculated 
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Figure 1 Divergence and geographic origins of 517 rice landraces. (a) Neighbor-joining tree 
constructed from simple matching distance of all SNPs. Red, indica; blue, japonica; purple, 
intermediate. (b) Comparison of allele frequencies between indica and japonica. For each SNP,  
we identified the minor allele across all landraces and then calculated the frequency of this allele in 
indica and japonica. Color index indicates the number of SNPs with each set of allele frequencies.  
(c) Genome-wide average LD decay estimated from 373 indica (red) and 131 japonica (blue) landraces.
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from the SNPs (Fig. 1). The resulting neighbor-joining tree showed 
two divergent groups belonging to the two subspecies of cultivated 
rice, Oryza sativa ssp. indica and ssp. japonica. On the basis of the 
neighbor-joining tree, we were able to identify 373 typical indica and 
131 typical japonica landraces (Fig. 1a). The geographic distribution 
of japonica landraces extends further north than that of indica 
(Supplementary Fig. 5). There are 13 intermediate landraces, which 

may have resulted from occasional historical hybrids between indica 
and japonica that experienced partial reproductive isolation.

From the SNP data, sequence diversity (π) was estimated at 
0.0024 for all sampled landraces, and 0.0016 and 0.0006 for indica 
and japonica, respectively. These estimates suggest that the overall 
genetic variation of the landraces we studied represents at least 80% 
of the world’s rice cultivars, and the indica landraces have much 

higher genetic diversity than the japonica 
landraces15,16. The population-differentiation 
statistic (FST) between the indica and japonica 
landraces was estimated at 0.55, indicating 
a very strong population differentiation. 
After screening all SNPs that were highly 
differentiated in frequency between indica 
and japonica, we found a total of 367,081 
(~10%) SNPs that were nearly fixed (with 
an allele frequency >0.95 in one subspe-
cies and <0.05 in the other) and a total of 
127,729 (~3.5%) SNPs that were completely 
fixed (Fig. 1b). These subspecies-specific 
signatures may reflect, as well as affect, 
the strong indica-japonica differentiation. 
We observed that the subset of complete-
 differentiation SNPs had a smaller propor-
tion of coding-region SNPs (P < 0.0001) and a 
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lower nonsynonymous-to-synonymous ratio  
(P < 0.0001) than did the set of all SNPs 
detected in this study. Furthermore, across the 
whole genome we identified 53 genes that con-
tained large-effect complete-differentiation 
SNPs; among these might be genes involved 
in the differentiation of the two subspecies  
(Supplementary Table 6).

We then investigated the population 
structure within subspecies. According 
to the neighbor-joining tree as well as the 
 principal-component analysis (PCA)17, both 
indica and japonica had three subgroups, 
designated 1, 2 and 3 (Fig. 2). It has previ-
ously been suggested that the photoperiod 
and temperature clines along latitudes may 
have been the primary factors driving dif-
ferentiation of cultivated rice in China1. We 
tested the difference in latitude distribution 
and found that indica group 3 was signifi-
cantly more northern than indica group 1 
(P < 0.0001) or indica group 2 (P < 0.05) 
(Fig. 2c). A similar pattern was observed 
in japonica, whose group 3 was signifi-
cantly more northern than the other two  
(P < 0.0001) (Fig. 2f). The measure of popu-
lation differentiation, FST, was estimated at 
0.17 among the three subgroups of indica, 
suggesting a moderate level of differen-
tiation within indica. The genetic differ-
entiation within japonica was slightly less  
(FST = 0.14) but still higher than that between 
different human populations (FST = 0.12)3. 
The fine-scale maps for the sequence diver-
sity π and the population differentiation  
FST of the two subspecies showed great vari-
ation along chromosomes (Supplementary 
Fig. 6 and Supplementary Fig. 7). We 
observed that some regions had a high FST, 
including a total length of 2.1 Mb in japonica 
and 0.6 Mb in indica with an FST > 0.5, indi-
cating that they contain loci that may be 
involved in the geographic adaptation.

Whole-genome patterns of linkage disequilibrium
We then analyzed LD for indica and japonica landraces using the 
SNP data. The LD decay rate was measured as the chromosomal 
distance at which the average pairwise correlation coefficient (r2) 
dropped to half its maximum value. Genome-wide LD decay rates of 
indica and japonica were estimated at ~123 kb and ~167 kb, where 
the r2 drops to 0.25 and 0.28, respectively (Fig. 1c). This is in agree-
ment with the previous estimation that cultivated rice has a long-
range LD from close to 100 kb to over 200 kb13,18, which might be 
a result of self-fertilization coupled with a relatively small effective 
population size.

We further examined whole-genome patterns of LD in the two 
subspecies. LD varied widely across the genomes of both indica and 
japonica (Supplementary Fig. 8), which would presumably lead to 
differential resolutions of association mapping at different genomic 
regions. It is noteworthy that the LD decay rates of indica and 
japonica were only weakly correlated across the genome (Spearman 

correlation coefficient is 0.01). This is markedly different from what 
has been observed for human, where both local and global patterns 
of LD vary little among different human populations3. The differ-
ences between indica and japonica rice may have accumulated from 
a relatively long history of partial reproductive isolation of these 
self-fertilized subspecies.

Constructing a high-density haplotype map of the rice genome
Onefold genome sequencing of more than 500 landraces allowed 
identification of a large number of SNPs with high accuracy. However, 
the genotype data set contained numerous missing genotype calls, 
making it insufficient for GWAS. Data-imputation methods have 
not been developed to deal specifically with low-coverage genome 
sequencing data. Of the available imputation models, the k-nearest 
neighbor algorithm (KNN) seemed effective for handling a relatively 
large number of missing genotypes without a reference haplotype 
map19,20. We adopted the KNN algorithm to explore local haplotype 

table 1 Genome-wide significant association signals of agronomic traits using the 
compressed MlM

Trait Chromosome
Position  

(IRGSP 4)
Major  
allele

Minor  
allele

Minor  
allele  
freq.

P value  
(compressed MLM)a Known locib

Tiller number 4 3,760,194 A T 0.20 3.2 × 10−7

9 23,332,559 A G 0.34 1.5 × 10−7

10 15,239,407 T A 0.10 4.1 × 10−7

Grain width 5 4,907,158 C G 0.21 2.7 × 10−9

5 5,341,575 G A 0.17 7.2 × 10−18 qSW5 (ref. 29)

Grain length 3 17,371,398 G C 0.06 1.3 × 10−10 GS3 (ref. 30)

3 17,637,475 C A 0.08 2.7 × 10−11

3 23,349,781 A C 0.13 3.3 × 10−7

5 5,343,949 A G 0.20 1.7 × 10−7

11 3,072,370 C T 0.11 3.8 × 10−7

Spikelet number 7 18,005,615 C T 0.44 7.1 × 10−8

10 5,976,140 C T 0.06 1.3 × 10−7

Gelatinization  
temperature

6 6,726,252 C T 0.20 7.1 × 10−9 ALK (ref. 26)

Amylose content 6 1,770,929 T C 0.14 5.0 × 10−26 Waxy (refs. 27,28)

6 6,189,558 A T 0.11 3.0 × 10−8

6 6,709,537 C T 0.19 7.4 × 10−12

Apiculus color 6 5,335,519 A G 0.33 5.6 × 10−27 OsC1 (ref. 23)

6 7,671,184 T C 0.32 9.4 × 10−9

Pericarp color 2 27,066,598 A G 0.24 2.2 × 10−9

7 6,123,504 A G 0.34 2.1 × 10−52 Rc (ref. 24)

8 12,483,076 T G 0.21 1.3 × 10−11

Hull color 6 10,378,142 T C 0.06 3.8 × 10−7

9 7,366,211 T C 0.20 3.3 × 10−13 Ibf (ref. 25)c

Heading date 2 1,439,288 G A 0.42 3.9 × 10−7

2 30,818,552 G C 0.07 3.8 × 10−7

4 18,773,995 A T 0.25 3.0 × 10−7

6 11,083,237 G A 0.05 6.6 × 10−8

9 10,738,885 C A 0.06 2.8 × 10−10

11 28,247,391 C T 0.12 4.2 × 10−9

12 18,324,888 G A 0.06 1.4 × 10−7

Drought tolerance 1 5,536,395 G T 0.11 4.1 × 10−7

5 2,275,357 A C 0.06 2.5 × 10−8

6 28,243,628 C T 0.09 3.4 × 10−9

11 21,161,361 G C 0.08 8.5 × 10−12

Degree of seed  
shattering

2 25,025,325 C T 0.16 4.7 × 10−8

5 948,266 T C 0.38 2.5 × 10−7

10 2,319,249 T G 0.06 2.2 × 10−7

aP values of the association signals from the simple model are listed in supplementary table 7. bDetails of the known loci are 
provided in Figure 4 and the supplementary Note. cThe causal gene has not yet been identified and confirmed.
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similarity and further developed an algo-
rithm that provided sufficient imputation 
accuracy and efficiency by optimizing a set 
of genomic and populational parameters 
(Online Methods and Supplementary Note). 
The improved algorithm was then used to 
impute the missing calls of the genotype data 
set from onefold-coverage genome sequenc-
ing (Supplementary Fig. 9). The imputation 
of the genotypes of all 517 landraces reduced 
missing genotypes from 61.7% to 2.9%, with 
an accuracy above 98% (Supplementary 
Table 3). It would require more than 20-fold 
sequencing coverage of the rice genome to 
yield such a low missing-data rate with a 
slightly higher accuracy (Supplementary 
Fig. 10). Therefore, our approach, combining 
second-generation sequencing technology 
with an effective imputation procedure, per-
mits the quick construction of a high-density 
haplotype map at a markedly lower cost than 
microarray-based genotyping.

We then examined the influence of various biological and experi-
mental factors on the performance of the data imputation (Fig. 3). 
Notably, this method performed well even when LD decayed within 
10 kb; with this LD decay, the missing-data rate was below 5%, with 
an accuracy above 95%. This suggests that our imputation method 
for low-coverage genome sequencing data is also applicable to other 
genomes with short-range LD.

Genome-wide association studies for 14 agronomic traits
The high-density haplotype map enabled genome-wide association map-
ping in rice. The strong population structure, along with a slow LD decay 
rate, makes GWAS in this species not straightforward. To evaluate the 
performance of GWAS, we carried out GWAS on 14 agronomic traits, 
which can be divided into five categories: morphological characteristics 
(tiller number and leaf angle), yield components (grain width, grain 
length, grain weight and spikelet number), grain quality (gelatinization 
temperature and amylose content), coloration (apiculus color, pericarp 
color and hull color) and physiological features (heading date, drought 
tolerance and degree of seed shattering) (Supplementary Fig. 11).

Given the strong population differentiation between the two sub-
species of cultivated rice, we did not look for associations across 

both subspecies. We conducted GWAS for 373 indica lines. The 
sequencing-based genotype data set contained an average density of 
~1.7 common SNPs per kb in indica (with a minor allele frequency 
of >0.05). Both the simple model and the compressed mixed linear 
model (MLM)21,22 were used to identify association signals. The com-
pressed MLM approach, which took genome-wide patterns of genetic 
relatedness into account, greatly reduced false positives, as shown 
in quantile-quantile plots (Fig. 4 and Supplementary Figs. 12–23).  
A total of 37 association signals were identified with P < 5 × 10−7 
from the compressed MLM (Table 1). We also identified strong asso-
ciation signals with P < 10−8 from the simple model, discarding all 
but the top five most significant signals for each trait if there was an 
excess of strong associations (Supplementary Table 7). In total, we 
identified 80 associations for the 14 agronomic traits. The Manhattan 
plots for both models of all the traits are shown in Supplementary  
Figures 12–23, and detailed information about all significant associa-
tions is summarized in Supplementary Table 8.

Association signals for six traits were located close to known 
genes that have been identified previously using mutants or studies 
of recombinant populations23–30 (Fig. 5 and Supplementary Note). 
Although the association resolution varies among loci, mostly owing 
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Figure 5 Regions of the genome showing 
strong association signals near previously 
identified genes. Top of each panel shows a 
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(SNP with the lowest P value), whose position 
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log10-transformed P values from the compressed 
MLM are plotted on the vertical axis; axis 
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to local LD, the resolutions were all less than 26 kb (within about  
1–3 genes). Notably, the peak signals of the GWAS loci often appeared 
near (but not within) the known genes.

We then screened the causal polymorphisms of three known 
genes by direct PCR amplification and sequencing, and found that 
all of them showed a slightly weaker association than peak signals 
nearby (Supplementary Table 9). These results were consistent 
with similar findings in Arabidopsis thaliana8 and may result from 
multiple causal polymorphisms of a gene coupled with complex 
population structure.

Together, the data show that the degree to which population strati-
fication confounds associations varies markedly across traits (Fig. 4). 
An extreme example was observed for heading date (flowering time), 
a trait that is strongly affected by population structure and control-
led by numerous small-effect loci8,31. We found that heading date 
strongly correlated with both population structure and geographic 
distribution (R2 = 0.5 with the first principle component and R2 = 0.3 
with the latitude for the indica landraces). Hence, the simple model 
yielded overwhelming association peaks across the genome (Fig. 4e,f). 
Among the peaks, modest association signals were observed around 
three known genes controlling heading date32, but these signals did 
not stand out on the whole-genome scale (Supplementary Fig. 24). 
Although the compressed MLM approach reduced the number of 
false positives (Fig. 4g,h), there was too much structure for it to yield 
substantial statistical power; essentially, there were no statistical 
solutions that could detect the quantitative trait loci (QTL) affecting 
structure by GWAS.

We further inspected the genetic architecture of the 14 agronomic 
traits. Peak SNPs at the identified loci explained ~36% of the phe-
notypic variance, on average (from 6% to 68% for different traits; 
Fig. 6), which is much higher than for SNPs in GWAS of human5,6. 
Six of the traits had one or two strong peaks of association with 
relatively large effects; these were traits for colors, grain quality and 
grain width (Fig. 4a–d). We observed that most of the major loci 
controlling these six traits had causal genes identified previously. Of 
the six known genes mentioned above, five underlie these traits, and 
these five show the strongest associations (Fig. 5 and Supplementary 
Note). For other traits, our results suggest that multiple loci with 
relatively small effects contribute to the phenotypic variance. The 
new loci identified here are attractive candidates for follow-up stud-
ies that could further our understanding of the genetic architecture 
of these traits.

DISCUSSION
These studies demonstrate that GWAS of rice landraces can be used 
for genetic mapping of multiple traits simultaneously at a fine resolu-
tion. Furthermore, direct resequencing of rice landraces provides a 
wealth of sequence polymorphisms and high association resolution 
in GWAS, despite modest rates of LD decay in rice.

Direct resequencing can also enable the detection of structural 
variation, which will greatly facilitate follow-up studies to determine 
 functional variation. Future studies could identify structural variation 
from low-coverage genome sequencing data partly by combining infor-
mation across landraces whose haplotypes are similar. However, for 
the comprehensive identification of structural-variation events, it will 
be more effective to deep sequence and assemble a small number of 
landraces with maximal genetic diversity. Such an approach will soon 
be feasible, as second-generation sequencing technology continues to 
improve in terms of both read length and paired-end insert size.

More information will be gained through GWAS of rice landraces 
as additional phenotypes are evaluated, especially in different envi-
ronments, and as a larger number of broadly representative landraces 
are sampled. Several follow-up steps could be taken to pinpoint candi-
date genes via application of rice functional-genomics approaches33. 
Moreover, for the clinal adaptive traits (for example, flowering time), 
association mapping will require biparental populations from specific 
crosses. Constructing collaborative recombinant-mapping popula-
tions selected from the sequenced landraces may help to control for 
population structure, as well as identifying alleles with small effects  
or low frequency in the population7,31,34,35. Joint mapping with 
this association panel and multiple biparental crosses is likely to be 
extremely powerful.

In this study, we chose to conduct GWAS for only the indica 
 landrace population because its larger sample size and higher genetic 
diversity provided sufficient power for association analysis. The 
smaller population size and low genetic diversity from the japonica 
samples within China would limit the power of GWAS. A worldwide 
effort to collect rice accessions for whole-genome resequencing and 
comprehensive phenotyping is under way, and associations from this 
broader sampling can be investigated in the future. For studies aiming 
to improve map resolution and new-allele identification through  
continuous population expansion, genome sequencing is an effec-
tive genotyping approach for GWAS because it allows new SNPs to 
be added and imputation efficiency to be improved even at lower 
sequence coverage. This study therefore lays the foundation for a 
long-term collective effort to discover valuable genes and alleles from 
the world germplasm collection for cultivar improvement.

URLs. Annotation of rice SNPs, http://www.ncgr.ac.cn/RiceHapMap/
Download; Rice Haplotype Map Project database, http://www.ncgr.
ac.cn/RiceHapMap; RAP2 database, http://rapdb.dna.affrc.go.jp/
archive/build4.html; EBI European Nucleotide Archive, ftp://ftp.era.
ebi.ac.uk/; SEG-Map pipeline, http://www.ncgr.ac.cn/software/SEG/; 
IRGSP 4.0, http://rgp.dna.affrc.go.jp/IRGSP/Build4/build4.html; Ssaha2 
version 2.3, http://www.sanger.ac.uk/Software/analysis/SSAHA2/.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Accession codes. Raw sequences have been deposited in the EBI 
European Nucleotide Archive with accession numbers ERP000106 
for 517 rice landraces, ERP000235 for indica cv. Guangluai-4 and 
ERP000236 for japonica cv. Nongken-58.

Tille
r n

um
be

r

Le
af

 a
ng

le

Gra
in 

widt
h

Gra
in 

len
gt

h

Gra
in 

weig
ht

Spik
ele

t n
um

be
r

Gela
tin

iza
tio

n

Tem
pe

ra
tu

re

Am
ylo

se
 co

nt
en

t

Apic
ulu

s c
olo

r

Hull
 co

lor

Per
ica

rp
 co

lor

Hea
din

g 
da

te

Dro
ug

ht

to
ler

an
ce

Deg
re

e 
of

sh
at

te
rin

g

0

10 3

5
55

5

5 5
5

5

5 5
5

55

5

55
5

4
7

7

5
12

2

2

3

3

3

3

3

3

3
6

0 0 2

2
1

4

728

Loci from mixed model Loci from simple model Joint loci

C
on

tr
ib

ut
io

n 
to

 p
he

no
ty

pi
c

va
ria

nc
e 

(%
)

20

30

40

50

60

70

80

Figure 6 Contributions of identified loci to phenotypic variance of each 
of 14 agronomic traits. Numbers of loci used to assign contributions 
to phenotypic variance are indicated at ends of bars. Loci from the 
compressed MLM are listed in table 1, and loci from the simple model 
are listed in supplementary table 7. Joint loci from both models, with 
redundancy excluded, are listed in supplementary table 8.

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.

http://www.ncgr.ac.cn/RiceHapMap/Download
http://www.ncgr.ac.cn/RiceHapMap/Download
http://www.ncgr.ac.cn/RiceHapMap
http://www.ncgr.ac.cn/RiceHapMap
http://rapdb.dna.affrc.go.jp/archive/build4.html
http://rapdb.dna.affrc.go.jp/archive/build4.html
ftp://ftp.era.ebi.ac.uk/
ftp://ftp.era.ebi.ac.uk/
http://www.ncgr.ac.cn/software/SEG/
http://rgp.dna.affrc.go.jp/IRGSP/Build4/build4.html
http://www.sanger.ac.uk/Software/analysis/SSAHA2/


Nature GeNetics  VOLUME 42 | NUMBER 11 | NOVEMBER 2010 967

A rt i c l e s

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Sampling. We sampled Chinese rice landraces from a collection of ~50,000 
rice accessions preserved at the China National Rice Research Institute in 
Hangzhou, Zhejiang Province. From the germplasm database records of  
phenotypic variation and geographic origins, we generated a data matrix and 
conducted a cluster analysis. On the basis of the resulting cluster tree, we 
sampled accessions to represent the entire range of phenotypic diversity and 
geographic distribution of the Chinese rice landraces. Depending on avail-
ability, 20–30 seeds of each accession were germinated and the seedlings were 
planted in the experimental field at the China National Rice Research Institute 
in Hangzhou for phenotypic evaluation.

DNA isolation and genome sequencing. Total genomic DNA was extracted 
from leaf tissues using the DNeasy Plant Mini Kit (Qiagen). For each lan-
drace, a single individual was used for genome sequencing on the Illumina 
Genome Analyzer II. Library construction and sample indexing was done 
as described14. Indexed libraries of five landraces were mixed with an 
equal molar concentration and loaded on 2% agarose gels. Fragments of  
300–400 bp were recovered and purified, and then enriched by nine cycles of 
PCR. The library was loaded into one lane of the Illumina Genome Analyzer 
II for 2 × 76 bp paired-end sequencing. Image analysis and base calling were 
done using the Illumina Genome Analyzer processing pipeline (v1.4). PERL 
scripts in the SEG-Map pipeline were applied to sort raw sequences on the 
basis of the 5′ indexes. 73-mer reads were obtained after the three-base indexes 
were trimmed.

Sequence alignment and genotype calling. The 73-bp paired-end reads were 
mapped to the rice reference genome (IRGSP 4.0) using the software Ssaha2 
version 2.3. Aligned reads were picked up with a cutoff of minimum 96% iden-
tity over 92% consecutive nucleotides of a read. Only uniquely aligned reads 
(reads mapped to unique locations in the reference genome) were retained. 
These reads were used to call the single–base pair genotypes of the consensus 
sequences across the whole genome by the Ssaha Pileup package (version 
0.5). The low-quality bases (base-quality Q score in Phred scale <25) were 
removed, and those called sites with conflicting genotypes among different 
reads were further excluded. Additionally, we required that the overall depth 
in each site be <15 to avoid mapping to regions with copy-number variation. 
Next, the single–base pair genotypes of 520 rice accessions were integrated 
together for SNP identification. The detailed procedure is provided in the 
Supplementary Note. The consensus sequences of each line at the SNP sites 
were further retrieved for genotype calling. Four sets of sequencing data, 
which included BAC-based Sanger sequencing data10,36 and high-coverage 
resequencing data of both indica and japonica, were used to assess genotyping 
accuracy (Supplementary Note).

Phylogenetic and population genetic analyses. Neighbor-joining trees and 
principal-component analysis plots were used to infer population structure of 
the rice landraces. A pairwise distance matrix derived from the simple matching 
distance for all SNP sites was calculated to construct unweighted neighbor-
 joining trees using the software PHYLIP version 3.66 (ref. 37). Principal-
 component analysis was done using the software EIGENSTRAT17. To minimize 
the contribution from regions of extensive strong LD, if a pair of SNPs within 
the 50-kb region had r2 greater than 0.8, we removed one of them. The first two 
principal components were plotted against each other for the indica population 
and the japonica population, respectively. LD was calculated using the software 
Haploview with default settings38. Pairwise r2 was calculated for all SNPs in 
a 500-kb window and averaged across the whole genome. Sequence diversity  
(π) was calculated in a 100-kb window as the average number of pairwise differ-
ence per site for all pairs of total sampled landraces, all pairs of indica landraces 
or all pairs of japonica landraces39. The population-differentiation statistics (FST) 
were computed as described40, using a 100-kb window, between the indica and 
japonica landraces, among the three subgroups of indica and among the three 
subgroups of japonica.

Missing genotype imputation. A data-imputation method based on a KNN 
algorithm was developed for inferring a large number of missing genotypes 
generated from low-coverage genome sequencing (Supplementary Fig. 25). 

The imputation is performed in a chromosomal region defined by a given 
number of SNPs—that is, in a window size of w SNPs. The window size is 
allowed to vary according to the size of chromosomal regions in which LD is 
reasonably strong. The window then slides along a chromosome at a step size 
of one SNP until the missing data are inferred for the entire chromosome. The 
detailed algorithm is provided in the Supplementary Note.

SNP sites with too much missing data should be excluded for use in impu-
tation. To ensure imputation quality, SNPs with more than 80% missing data 
and SNPs with minor allele frequency less than 5% were excluded in this study. 
This method can be more widely applied when haplotype phasing procedure 
is incorporated to impute heterozygous genotypes.

The specificity of the genotype data set before and after imputation of missing 
genotypes was assessed using four sets of sequencing data (Supplementary 
Note). The missing-data rate of the genotype data set was calculated as the 
average proportion of missing calls of the SNP sites. A detailed list of these 
assessments is provided in Supplementary Table 3.

Genome-wide association analysis. Association analyses were conducted 
using the simple model and the compressed MLM. The genotype data  
set for indica were generated after imputation of missing genotypes, with a 
total of 671,355 common SNP sites (minor allele frequency > 0.05 in 373 
indica lines).
 For the simple model analysis, we used the following equation: 

y = Xα + e.

For the compressed MLM analysis, we used the equation21,22 

y = Xα + Pβ + Kµ + e.

In these equations, y represents phenotype, X represents genotype, P is the 
PCA matrix instead of the Q matrix and K is the relative kinship matrix. Xα 
and Pβ represent fixed effects, and Kμ and e represent random effects. The top 
five principal components were used to build up the P matrix for population-
structure correction. The matrix of simple matching coefficients was used 
to build up the K matrix, and this step was followed by compression22. The 
analyses were performed using PROC MIXED in SAS (SAS Institute).

Phenotyping. For each landrace, five randomly chosen plants were evaluated 
and their mean was calculated. Tiller number was evaluated when grains fully 
ripened. On the main tiller, flag leaf angle was measured.

Grain length and width were measured at the maximal values for each 
grain using an electronic digital caliper. Grain weight was initially obtained by 
weighing a total of 200 grains, then converting it to 1,000-grain weight, a scale 
commonly used for yield evaluation. The total number of spikelets produced 
per panicle was counted manually.

Amylose content was determined according as described41. Milled rice  
flour (50 mg ± 0.5 mg) was digested with 0.5 ml of 95% (vol/vol) ethanol 
and 4.5 ml of 1 N NaOH overnight, mixed with 0.2 ml 0.2% (wt/vol) I2 in 
2% (wt/vol) KI solution and diluted with 0.1 ml 1 N acetic acid to 10 ml. The 
 amylose-iodine color was measured at 608 nm using a spectrophotometer 
(Bausch and Lomb Spectronic 20). Gelatinization temperature was determined 
by an alkali digestion test42. The degree of alkali spreading was measured in 
1.7% (wt/vol) KOH solution for 23 h in a 30 °C oven.

Heading date was recorded as the number of days from sowing to the time 
when inflorescences had emerged above the flag leaf sheath for more than half 
of the individuals of a landrace. The degree of drought tolerance was scored on 
the basis of the ratio of the burliness rate of the rice landraces in the dry field 
to that in the wet field. The degree of seed shattering was scored on a scale of 
1–3 (easy, medium and hard) when grains fully ripened.

Software and data release. The SNP data set can be found at the Rice 
Haplotype Map Project database (http://www.ncgr.ac.cn/RiceHapMap). The 
program for missing-data imputation, implemented in C, can be freely down-
loaded from the database website.

36. Huang, X. et al. Genome-wide analysis of transposon insertion polymorphisms 
reveals intraspecific variation in cultivated rice. Plant Physiol. 148, 25–40 
(2008).
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