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Dysregulation of expression correlates with  
rare-allele burden and fitness loss in maize
Karl A. G. Kremling1, Shu-Yun Chen2,3, Mei-Hsiu Su2, Nicholas K. Lepak4, M. Cinta Romay2, Kelly L. Swarts1,5, Fei Lu2,6, 
Anne Lorant7, Peter J. Bradbury4 & Edward S. Buckler1,2,4

Here we report a multi-tissue gene expression resource that 
represents the genotypic and phenotypic diversity of modern inbred 
maize, and includes transcriptomes in an average of 255 lines in 
seven tissues. We mapped expression quantitative trait loci and 
characterized the contribution of rare genetic variants to extremes 
in gene expression. Some of the new mutations that arise in the 
maize genome can be deleterious; although selection acts to keep 
deleterious variants rare, their complete removal is impeded by 
genetic linkage to favourable loci and by finite population size1–4. 
Modern maize breeders have systematically reduced the effects of 
this constant mutational pressure through artificial selection and 
self-fertilization, which have exposed rare recessive variants in elite 
inbred lines5. However, the ongoing effect of these rare alleles on 
modern inbred maize is unknown. By analysing this gene expression 
resource and exploiting the extreme diversity and rapid linkage 
disequilibrium decay of maize6, we characterize the effect of rare 
alleles and evolutionary history on the regulation of expression. 
Rare alleles are associated with the dysregulation of expression, 
and we correlate this dysregulation to seed-weight fitness. We find 
enrichment of ancestral rare variants among expression quantitative 
trait loci mapped in modern inbred lines, which suggests that 
historic bottlenecks have shaped regulation. Our results suggest that 
one path for further genetic improvement in agricultural species lies 
in purging the rare deleterious variants that have been associated 
with crop fitness.

The phenotypic consequences of rare deleterious alleles are of 
interest for their role in disease and fitness, but their effects are difficult 
to detect without prohibitively large sample sizes4,7,8. Gene expression, 
a phenotype for which millions of observations are obtainable, has 
previously been associated with rare alleles through pedigrees9 and 
correlated with the burden of rare alleles in putative cis-regulatory 
regions10. However, links between regulation of expression, fitness 
and altered allele frequencies resulting from population bottlenecks 
are not well established.

Maize provides a powerful system with which to evaluate these 
questions. Although the mutation rate of maize (9–20 ×​ 10−9 mutations  
per base pair per generation) is similar to that of humans11, the rapid 
decay of linkage disequilibrium in much of the genome is an order 
of magnitude faster than in other large eukaryotic genomes, which 
improves the resolution of associating phenotypes with both rare and 
common genotypes (average r2 <​ 0.1 in 2 kb)6,12. Maize is also very 
diverse (nucleotide diversity, π ≈​ 1.4%13; approximately 14×​ more than 
humans) having preserved much of the diversity from its wild tropical 
relative teosinte12. However, population bottlenecks during temperate 
adaptation and modern breeding have severely reduced the diversity of 
maize and severely reduced its effective population size (Ne) from more 
than one million in pre-bottleneck tropical landraces5,14,15.

Because it has undergone intensive selection and systematic 
inbreeding since approximately 1900, which has contributed to an 
eightfold increase in productivity16,17, maize also provides an extreme 
case in which to examine the capacity of selection and inbreeding to 
purge deleterious variants. Additionally, the rapid linkage disequilib-
rium decay in maize enables the testing of whether rare alleles or novel 
combinations of common alleles drive extreme expression.

Here we quantified mRNA expression from 299 maize lines that 
represent the genotypic and phenotypic diversity of modern inbred 
maize18. We automated a 3′​ mRNA sequencing method (QuantSeq, 
Lexogen GmBH), which is more efficient and accurate than mRNA 
sequencing and deals well with paralogues19,20. We used this method to 
profile seven diverse tissues (Extended Data Fig. 1 and Supplementary 
Table 1). All lines had previously been genotyped by whole genome 
sequencing to produce a set of 61,430,377 segregating variants21, which 
we used to map expression quantitative trait loci (eQTL). We also  
calculated the fraction of variance in expression explained by indi-
vidual single nucleotide polymorphisms (SNPs). We further used the 
variance explained to quantify whether alleles that were rare in pre-
bottleneck tropical lines22 have a disproportionately large role in the 
regulation of expression in modern temperate bottlenecked germplasm  
(see Methods).

To determine whether rare alleles contribute to extreme gene expres-
sion, we investigated whether rare-allele abundance is greatest in indi-
viduals with extreme gene expression. We calculated an expression rank 
and upstream (5 kb) rare-allele count for each combination of gene and 
individual maize line10 (Fig. 1a). In each tissue, this was done separately 
for each of the 5,000 most highly expressed genes. At each expression 
rank we plotted the mean number of rare alleles across the 5,000 gene-
line combinations, which gave a mean number of rare cis variants at 
each rank. If rare alleles drive extreme expression, then individuals 
at the lowest and highest expression ranks should have the highest 
number of rare cis variants. Significance was tested using a quadratic 
regression to compare the expression rank with the cis rare-allele 
count as previously described10. Using allele frequencies from previous 
whole genome sequencing of these lines21, we find that the abundance 
of rare SNPs within 5-kb upstream of the nearest gene (minor allele  
frequency (MAF) ≤​ 0.05) is significantly correlated with extreme over- 
and underexpression in all tissues, relative to the population mean per 
gene (P <​ 1.90 ×​ 10−80 and R2 =​ 0.72, Fig. 1b and Extended Data Fig. 2).  
Although the quadratic regression is highly significant, even more- 
extreme departures exist at the tails than predicted by the regression  
(Fig. 1b, c); we therefore focus on the rare-allele count deviations of 
the five highest- and lowest-expressing individuals across the 5,000 
most-expressed genes. Across the tissues, individuals that express at 
the lowest five expression ranks are enriched 1.68–1.86-fold for local 
rare alleles compared to the middle two quartiles, whereas the top five 
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ranks are enriched by 1.22–1.46-fold over the middle two quartiles  
(Fig. 1b, e and Extended Data Fig. 2).

When broken down by proximity to the transcription start site, we 
observe that rare variants nearest to the transcription start site have the 
greatest effect (Fig. 1d). It is also notable that the ratio of underexpress-
ing to overexpressing individuals possessing rare cis variants is greater 
nearest to the transcription start site (Fig. 1d). This is consistent with 
the proposition that disruption to gene-proximal promoters lowers 
expression, whereas distal disruptions have a relatively greater chance 
of increasing expression.

Although both over- and underexpression are potentially deleteri-
ous consequences of dysregulation, we note that there are significantly 
more cis rare alleles in underexpressing individuals than there are 
near the same genes in overexpressing individuals (P =​ 7.91 ×​ 10−32, 
Fig. 1e). This observation is consistent with stronger selection against 
underexpression, and with the expression dosage model of fitness and  
heterosis23. Additionally, it may be the case that rare variants are more 
likely to disrupt a promoter element than a repressor element, which 
would lead to a loss rather than a gain of expression. However, the 
greater apparent abundance of rare cis variants in underexpressing 
individuals may also partly be the result of under-calling expression, 
owing to mapping bias for genes that are located on rare haplotypes.

To evaluate how regulatory load affects genes at different expression 
levels, we compared how this load affects more- and less-expressed 
genes in each tissue. Purifying selection acts on regulatory variants24 
and is expected to be strongest near the most highly expressed genes25. 
This can result in the purging of dysregulatory variants or—if selection 

is not strong enough—an increase in rare variants because deleterious 
variants are reduced in frequency but not purged. By comparing 
rare-allele burdens 5-kb upstream of the most highly expressed genes 
(top 5,000) with those upstream of the medium-expressed genes (next 
5,000 most-expressed genes), we note that across all tissues the 5,000 
most highly expressed genes contain more cis rare alleles (Fig. 1e and 
Extended Data Figs 2, 3). However, consistent with an increased effect 
of purifying selection on the most highly expressed genes, we also note 
that the deleterious cis variants appear to be purged from the top 1,000 
most highly expressed genes, which in some tissues have fewer rare 
cis variants than the next 1,000 most-expressed genes (Extended Data 
Fig. 4).

These analyses reveal the cumulative effects of rare alleles; we can 
also directly estimate the effect of ancestrally rare alleles on expression 
by exploiting the evolutionary history and bottlenecks in maize. This 
is possible because we can sample allele frequencies in extant tropical 
maize populations that have not experienced the same bottlenecks, 
which enables us to infer the ancestral allele frequency for each SNP. 
Approximately half a million SNPs in the maize HapMap3 (about 1% 
of total SNPs) that are rare (≤​0.05 MAF) in 335 genotyped tropical 
lines22 are common (>​0.2 MAF) across our predominantly temperate 
expression-profiled lines (the base of the third leaf is shown in Fig. 2; 
remaining tissues shown in Extended Data Figs 5, 6), illustrating the 
effects of the tropical-to-temperate bottleneck. This class of formerly 
rare tropical SNPs—which is now of sufficient frequency to be easily 
detected in our eQTL association study using modern inbred lines—
enables powerful tests of ancestrally rare-allele effects. By comparing 
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Figure 1 | The abundance of local rare alleles correlates with extremes 
in expression. a, A greater number of rare alleles is expected upstream of 
a gene in individuals that over- or underexpress a given gene relative to 
the mean of the population. b, Significant quadratic relationship between 
the expression rank of each line, in each of the top 5,000 most-expressed 
genes and the average local (5-kb upstream) rare-allele count. Quadratic 
regression10 of root tissue is shown here. (n =​ 273 unique inbred samples, 
P =​ 1.95 ×​ 10−75, R2 =​ 0.72). Each point is the mean number of rare alleles 
within 5-kb upstream of genes for lines that share an expression rank for 
one of the 5,000 genes. c, Quadratic relationship between expression rank 
for medium-expressed genes (5,001–10,000) and local (5-kb upstream) 
rare-allele count (n =​ 273 unique inbred samples, P =​ 2.16 ×​ 10−66, 

R2 =​ 0.67). d, Expression ranks versus 5-kb upstream rare-allele counts 
divided into 1-kb windows (n =​ 273 unique inbred samples). TSS, 
transcription start site. e, Comparison of the number of rare cis alleles 
near genes for individuals in the bottom five expression ranks (fuchsia, 
n =​ 5 unique inbred samples measured for each of 5,000 genes) versus the 
middle two quartiles (yellow, n =​ 137 unique inbred samples measured 
for each of 5,000 genes) versus the top five expression ranks (blue, n =​ 5 
unique inbred samples measured for each of 5,000 genes) (mean ±​ s.e.m.) 
within the top 5,000 and next 5,000 most-expressed genes. P values from 
two-sided t-tests, comparing the top and bottom five expression ranks in 
the top 5,000 and next 5,000 most-expressed gene sets, are shown. This is 
consistent across tissues and gene sets (Extended Data Fig. 2, 3).
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the variance explained by alleles that are common in tropical maize 
lines versus those that are rare in these lines, while controlling for 
equal allele frequency in the RNA set, it is clear that tropical rare alleles 
explain significantly more variance in expression than do tropical 
common alleles across the whole genome in all tissues (Fig. 2b, c and 
Extended Data Figs 5, 6, Kolmogorov–Smirnov and Wilcoxon signed-
rank tests, P <​ 9.06 ×​ 10−33 for all tissues). This is clear from the high-R2 
SNPs, which can be seen to the left of the diagonal in the 2D MAF plot 
in Fig. 2a. Although some of these differences are adaptive, there are 
only a few hundred loci in the maize genome with a highly signifi-
cant Fst (fixation index) that are thought to be adaptive12,26. Therefore, 
many of the highly explanatory eQTL SNPs are likely to be deleterious. 
This highlights the fact that formerly rare alleles have significantly 
larger effects on quantitative expression phenotypes than do common  
variants, and suggests that the temperate bottleneck imposed substan-
tial changes on gene regulation.

Finally, we investigated the association between dysregulation 
in gene expression and a fitness trait. To quantify fitness, we used 
previously published seed yields of the expression-profiled lines 
(multi-environment best linear unbiased predictions27). First, we tested 
whether overall expression of the top 5,000 most-expressed genes could 
predict seed yields using ridge regression, which works across tissues 
(Extended Data Fig. 7). However, if dysregulation has a major role in 
altering phenotype, then the deviation in expression should also be 
predictive. We find support for this in two analyses: the cumulative 
deviation in expression for the 5,000 most-expressed genes in adult 
leaves and kernels significantly correlates with seed-weight fitness 
(Extended Data Fig. 8, Extended Data Table 1 and Supplementary 
Methods). Furthermore, by using the matrix of absolute deviation 
for the top 5,000 most-expressed genes in each tissue we were able 
to predict seed-weight fitness using ridge regression in six of seven 
tissues (Fig. 3). This predictive ability is significant in all tissues (Fig. 3,  
r =​ 0.19–0.38, P =​ 0.01 to P <​ 2.9 ×​ 10−7) except for immature roots 
(P =​ 0.68). Consistent with expectations, an increased rare-allele 
burden does correlate with decreased fitness (Extended Data Fig. 9), but 
this result is likely to be partially confounded with the recent breeding 
history of maize and pedigree relationships. Large bi-parental popula-
tions without population structure would be better suited to addressing 
this question.
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Figure 2 | Ancestral rare alleles are significantly enriched for highly 
explanatory cis eQTL in modern germplasm. a, Two-dimensional MAF 
plot coloured by R2 from cis eQTL for SNPs associated below P =​ 0.00001. 
Using n =​ 263 unique inbred lines and conducting an eQTL association 
study for each expression trait, we quantified the fraction of variance in 
expression explained (R2) by each cis SNP for its most strongly associated 
gene. eQTL R2 was determined by linear regression (matrix eQTL).  
b, c, Across temperate MAF levels, significantly more variance in 
expression is explained by SNPs that are rare in the tropical (Trop.) maize 
germplasm that has not undergone a bottleneck (two-sided Wilcoxon 
signed-rank and Kolmogorov–Smirnov tests, P <​ 1.12 ×​ 10−240). Results of 
tissue from base of leaf three shown here (n =​ 263 unique inbred samples). 
d, Histogram comparing RNA-set cis eQTL R2 across tropical MAF bins 
for SNPs with MAF over 0.2 in the RNA set. R2 determined by eQTL 
regression in matrix eQTL. Bars are coloured by the number of SNPs in 
each tropical MAF bin to illustrate that rarer alleles, which explain the 
most variance in expression, constitute the most abundant class of SNPs. 
A minimum RNA-set MAF of 0.2 is used, given the limited statistical 
power to map eQTL beneath this threshold with our RNA-set sample sizes. 
n =​ 263 unique inbred samples used in eQTL mapping.
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Figure 3 | Dysregulation of expression can predict fitness. Dysregulation 
of expression in the top 5,000 most-expressed genes from six of seven 
tissues significantly predicts seed-weight fitness. a, Range of correlations 
between predicted and true seed weight from ten repetitions of nested 
tenfold cross validation (ten inner and ten outer) using ridge regression. 
In the box plots, the middle horizontal lines represent the median, hinges 
represent the 25th and 75th percentiles (the interquartile range), the 
upper and lower whiskers extend to maximum and minimum points no 
more than 1.5×​ the interquartile range beyond the hinges, and individual 

dots are outliers beyond the whiskers. b, True seed weight versus mean of 
predicted seed weight in grams. P values obtained from linear regression 
between true seed weight and mean of predicted seed weight. For both a 
and b, sample sizes were as follows: 2-cm root tips (unique n =​ 181) and 
shoots (unique n =​ 183) of germinating seedlings; 2-cm base (unique 
n =​ 181) and tip (unique n =​ 182) of leaf 3, leaves collected in the 
field during the day (unique n =​ 135) and night (unique n =​ 187); and 
350-growing-degree-day kernels (unique n =​ 171), post sexual maturity 
(anthesis).
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The ability of dysregulation to predict fitness is notable, given that 
the expression profiles were not collected in the same environments or 
years in which the seed-weight fitness phenotypes were determined. 
In brief, environmental variance cannot be controlled between the  
individuals in which expression and fitness were measured, which 
adds noise to these regressions. For this reason, the effect of expression  
dysregulation on fitness calculated here may be underestimated.

Our results demonstrate the influence of rare genetic variation on 
gene expression, and provide an example that connects the dysregulation  
of expression and a fitness trait. Consistent with population genetic 
expectations and evidence that recombination is insufficient to purge 
deleterious variants in modern maize28, these results illustrate the 
disproportionate effect of rare alleles on thousands of expression 
phenotypes as well as the consequences of newly common alleles in 
modern low-Ne populations. Despite intensive selection and millions 
of yearly field trials by breeders5, maize provides evidence for the  
persistence of rare deleterious alleles in modern agricultural species 
after a strong bottleneck. This suggests that even intensive artificial 
selection is insufficient to purge genetic load. Although genomic  
selection has successfully combined favourable sets of common variants 
to improve yields, additional targeted breeding approaches and genetic 
manipulation would enable further removal of deleterious mutations 
and their phenotypic consequences.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
No statistical methods were used to predetermine sample size. The investigators 
were not blinded to allocation during experiments and outcome assessment. 
Planting order was randomized for chamber and greenhouse experiments, as well 
as within maturity groups for field-grown plants. Flat order was also randomized.
Tissue collection and RNA extraction. Two centimetres of the base of leaf three 
from three uniform plants per genotype at third leaf stage were collected from 
10:30 to 12:00. Tissue was collected 16–20 June 2015 and immediately frozen in 
liquid nitrogen. Seedlings were grown at one per cell in 96-cell flats in LM-111 mix 
(Lambert) at Guterman Greenhouse. Plants were watered daily and grown with 
40–60% humidity under supplementary high-pressure 600-W sodium lighting 
from 8:30 to 20:30. Day temperature was 30 °C and night temperature was 24 °C. 
Flat positions were randomized daily.

Two centimetres of germinating seedling roots and whole germinating seedling 
shoots were collected from three plants per genotype from 11:00 to 13:00 on the day 
of germination and immediately frozen in liquid nitrogen. Seeds were germinated 
at eight per cell in 24-cell flats in medium grain vermiculite (Lambert) to facilitate 
collection of roots without soil contamination. A walk-in growth chamber was used 
with two 12-inch 24-W 6400K T5 fluorescent lights per shelf. Lights were on from 
8:00 to 24:00. The lights were 36.5 cm from the shelves. Humidity ranged between 
40 and 60%. Seeds were watered daily and the temperature was maintained between 
22 and 24 °C. Flat positioning was randomized daily.

Seven developing kernels were collected from three plants at 350-growing- 
degree days after self-pollination and immediately frozen in liquid nitrogen. 
Based on pollination date, kernels were harvested between 11:00 and 13:00 from 
25 August 2014 to 19 September 2014, from plants grown in field M1 (Lima silt 
loam soil) at the Cornell Musgrave Research Farm. Seven immature kernels were 
collected and combined from three plants per genotype. End plants from each plot 
were avoided whenever possible.

Using these same plots, mature leaves were collected during the day (11:00–13:00)  
and during the night (23:00–01:00) in two batches, on 8 August 2014 and  
26 August 2014. Leaves were collected in two batches with the collection date 
assigned depending on what had already flowered by the dates above (see the 
column titled ‘Tissue’ in Supplementary Table 1 for collection date of adult leaves). 
Leaf sections from three plants per plot were collected into liquid nitrogen from a 
1-cm section to one side of the midrib from the second leaf below the tassel. The 
proximal–distal middle of the leaf blade was determined by folding the leaf in half 
such that the leaf tip touched the ligule.

Non-kernel tissues from three plants per genotype ×​ tissue combination were 
homogenized with two 3-mm steel beads using a Genogrinder in 30-s increments 
to ensure samples remained frozen (Spex Sample Prep). Between each grinding 
increment, samples were placed in liquid nitrogen. RNA was extracted using 
TRIzol (Invitrogen) with Direct-zol columns (Zymo Research). Twenty-one fro-
zen kernels (seven kernels from three individuals) per genotype were ground in an 
IKA seed mill (IKA). Hot borate and lithium chloride were used to extract RNA 
from kernels29. For kernels, RNA integrity was assessed using gel electrophoresis  
and extractions were repeated for degraded samples. For all tissues, RNA was quan-
tified using RNA QuantiFluor (Promega) and diluted on a Beckman Biomek NXp 
to a concentration of 100 ng/μ​l for library preparation. 3′​ RNA-seq libraries were 
prepared robotically from 500 ng total RNA in 96-well plates on an NXp liquid 
handler (Beckman Coulter) using QuantSeq FWD kits (Lexogen) according to the 
manufacturer’s instructions. Post-PCR cleanup was performed manually according 
to the QuantSeq protocol. Libraries were pooled to 96-plex, based on concentra-
tion as measured by DNA QuantiFluor (Promega). Molar concentrations for each 
pool were calculated from Bioanalyzer (Agilent) fragment lengths and digital PCR 
quantifications. Pools were sequenced with 90 nucleotide single-end reads using 
Illumina TruSeq primers on an Illumina NextSeq 500 with v2 chemistry at the 
Cornell University Sequencing facility.

Trimmomatic30 version 0.32 was used to remove the first 12 bp and Illumina 
Truseq adaptor remnants from each read. The first 12 bp were removed based on 
kit maker instructions, and the propensity for errors to occur in sequencing after 
random priming. The splice-aware STAR31 aligner v.2.4.2a was used to align reads 
against the maize genome annotation version AGPv.3.29, allowing a read to map in 
at most 10 locations (–outFilterMultimapNmax 10) with at most 4% mismatches 
(–outFilterMismatchNoverLmax 0.04), while filtering out all non-canonical 
intron motifs (–outFilterIntronMotifs RemoveNoncanonicalUnannotated). 
Default settings from HTSeq32 v.0.6.1 were used to obtain gene-level counts from 
the resulting BAM files. Counts were normalized by library sequencing depth 
using the -estimateSizeFactors method in DESeq233 in R. Expression counts were 
transformed using Box–Cox transformation after adding a small random value 
beneath the minimum detection threshold in order to enable transformation of 
zeroes.

Sample sizes. After positive sample identification by SNP-calling from RNA-seq 
data (as described below), sample sizes for each tissue were as follows: 2-cm root 
tips (n =​ 291, unique n =​ 273) and shoots (n =​ 295, unique n =​ 278) of germinating 
seedlings; 2-cm base (n =​ 302, unique n =​ 263) and tip (n =​ 295, unique n =​ 265) 
of leaf 3; 350-growing-degree-day kernels (n =​ 254, unique n =​ 229); and post- 
sexual-maturity (anthesis) leaves during the day (n =​ 210, unique n =​ 204) and 
night (n =​ 276, unique n =​ 260). Each sample was pooled from three individuals 
per genotype.
Genotyping. Genotypes from maize HapMap 3.2.1 were called as previously 
described21. Hapmap 3.2.1 was called on 1,268 inbred genotypes from across the 
world, with highly variable depth of coverage, and paralogous sites were retained, 
as they provide signal in genome-wide association studies. Because paralogous sites 
were retained, we used k-nearest neighbour imputation34 (KNNi) as implemented in 
TASSEL35 to impute; this was robust to high error rates in genotype calling, but KNNi 
over-imputes missing data to the major allele. Despite this bias, KNNi imputation for 
HapMap 3.2.1 had an overall accuracy of 0.988 and a minor allele imputation accuracy 
of 0.94 for imputed genotypes. Imputed HapMap 3.2.1 genotypes were projected onto 
the genotyping by sequencing (GBS)-genotyped inbred diversity panel (including 
tropical lines22) using FILLIN36. Projection was anchored by 465,085 consensus sites 
between HapMap3 and GBS, in which the physical positions match and the major/
minor alleles are shared; the projection accuracy was r =​ 0.99 between masked and 
subsequently imputed genotypes (0.96 for minor alleles).

To rapidly confirm the identity of the RNA-seq samples, SNPs were called 
from RNA-seq reads using FastCall37. Using SNPs called from the first 20 Mb on  
chromosome 10 (AGPv.3), all samples that did not match the reference genotype 
were discarded, leaving 1,960 samples. These SNPs called from RNA-seq were not 
used for eQTL association studies or other downstream analyses.
Gene set filtering. After library size normalization with DESeq2 (described above), 
genes were ranked by expression in each tissue and the top 5,000 were placed in the 
‘top 5,000’ set; the next 5,000 were placed in the ‘5,001–10,000’ set for each tissue. 
The blocks were further broken down into groups of 1,000 for the plots included 
in the Extended Data.
eQTL mapping and 2D MAF comparisons between tropical and RNA sets. 
Before mapping eQTL, 25 hidden factors were calculated using PEER38 for each 
tissue individually and these were used as covariates together with 5 multidimen-
sional scaling (MDS) coordinates calculated from HapMap 3.2.121. Using the 
PEER factors and MDS values, eQTL were mapped using a parallelized version of 
MatrixEQTL39 implemented in TASSEL using Java. P values and R2 from eQTL hits 
with significance below P =​ 0.00001 were recorded after performing association 
tests individually for each tissue with SNPs that had a MAF ≥​ 0.05 in the RNA-set 
samples for a specific tissue.

Each SNP present in the temperate-biased RNA set and previously published 
tropical lines22 was then plotted in a 2D minor-allele frequency plot, with its  
position on the plot determined by its frequency in the tropical and predominately 
temperate RNA set. Recorded R2 from cis eQTL (within ± 1 Mb) were then used 
to colour each dot, revealing the effects of ancestral allele frequencies on modern 
eQTL in Fig. 2. Within each tissue, the most strongly associated SNP–gene pair 
was kept for each SNP for plotting in the 2D MAF plots.

The distribution of variance explained by SNPs that were formerly rare (tropical 
MAF under 0.1), but are now common (RNA-set MAF over 0.4) was compared to 
SNPs that were common in the tropical populations and remain common in the 
RNA set, which revealed that formerly rare SNPs explain more variance.
Calculation of seed-weight fitness. Multi-location multi-year seed weight best  
linear unbiased predictions27 were used as a proxy for fitness. Seed weights 
from sweet corn and popcorn lines were excluded from Extended Data Fig. 8 
and Extended Data Table 1, given that dry seed weight is not a rational proxy for 
fitness or target of selection in these subpopulations. To be conservative, tropical 
lines were also excluded from Fig. 3 and Extended Data Fig. 7 because they are 
likely to be substantially dysregulated relative to the temperate material and have 
lower seed weights, thus inflating prediction accuracy of fitness from dysregulation. 
However, significant prediction accuracy is still achieved when tropical lines are 
included (data not shown).
Prediction of fitness from dysregulation of expression. To quantify the deviation 
of expression, we subtracted the mean expression level for a single gene from the 
expression of that gene in each line. This was done for the 5,000 highest expressed 
genes in each tissue. These 5,000 deviations were then used as X values in a ridge 
regression (alpha =​ 0) implemented using the glmnet package40 in R to predict the 
seed weight best linear unbiased predictions, discussed above. Ten repetitions of 
nested tenfold (tenfold inner, tenfold outer) cross-validation were carried out using 
glmnet. In Extended Data Fig. 8, the cumulative absolute deviation in expression 
for the top 5,000 most-expressed genes (see formula below) was also correlated 
against the seed weights.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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in which Di is the deviation of expression of individual i, eij is the expression of gene j  
in individual i, n is the number of genes and μj is the mean expression of gene j 
across all samples profiled in the tissue.
Code availability. Robotic code for Biomek NXp RNA-seq library production can 
be found at http://www.maizegenetics.net/robotic-code; parallelized implemen-
tation of matrix eQTL in TASSEL can be found at http://www.maizegenetics.net/
tassel; and FastCall for calling SNPs from whole genome sequencing data can be 
found at https://github.com/Fei-Lu/FastCall. Further scripts for making plots are 
available from the corresponding authors upon reasonable request.
Data availability. Sequence data that support the findings of this study have been 
deposited in the Sequence Read Archive under accession number SRP115041, and 
in BioProject under accession number PRJNA383416. Processed expression counts 
are available at the Cyverse Discovery Environment (de.cyverse.org/de/) under the 
directory: /iplant/home/shared/panzea/dataFromPubs/. All other data are available 
from the corresponding author(s) upon reasonable request.
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Extended Data Figure 1 | Tissues that were expression profiled by 3′ RNA-seq. See additional details regarding tissue collection in Methods. 
Illustrations inspired by ref. 41.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Higher numbers of rare alleles are upstream 
of genes in extreme-expressing individuals, for the most highly 
expressed genes. Quadratic regression of the expression rank of each line, 
for each of the top 5,000 most-expressed genes versus the average local 
(5-kb upstream) rare-allele count. a, Base of leaf three (n =​ 263 unique 
inbred samples). b, Tip of leaf three (n =​ 265 unique inbred samples).  

c, Adult leaves collected during the day (n =​ 204 unique inbred samples). 
d, Adult leaves collected at night (n =​ 260 unique inbred samples).  
e, Kernels at 350-growing-degree days (n =​ 229 unique inbred samples).  
f, Roots of germinating seedling (n =​ 273 unique inbred samples).  
g, Shoots of germinating seedling (n =​ 278 unique inbred samples).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 3 | Higher numbers of rare alleles are upstream 
of genes in extreme-expressing individuals, for the medium-expressed 
genes. Quadratic regression of the expression rank of each line, for each of 
the top 5,001–10,000 most-expressed genes versus the average local (5-kb 
upstream) rare-allele count. a, Base of leaf three (n =​ 263 unique inbred 
samples). b, Tip of leaf three (n =​ 265 unique inbred samples). c, Adult 

leaves collected during the day (n =​ 204 unique inbred samples).  
d, Adult leaves collected at night (n =​ 260 unique inbred samples).  
e, Kernels at 350-growing-degree days (n =​ 229 unique inbred samples). 
f, Roots of germinating seedling (n =​ 273 unique inbred samples).  
g, Shoots of germinating seedling (n =​ 278 unique inbred samples).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 4 | Comparison of the number of rare cis 
alleles near genes with differing expression levels. The 10,000 most-
expressed genes in each tissue are divided into groups of 1,000 on the 
basis of expression level. Plots in each panel show genes ranked 1–1,000, 
1,001–2,000, …, 9,001–10,000 from left to right. Each of the individuals 
represented in each tissue is ranked for expression for each of the 1,000 
genes in each group. Individuals in the bottom five expression ranks 
(fuchsia) versus the middle two quartiles (yellow) versus the top five 

expression ranks (blue) (mean ±​ s.e.m.). Y axes refer to mean upstream 
(within 5 kb) rare-allele count. a, Roots of germinating seedling (n =​ 273 
unique inbred samples). b, Shoots of germinating seedling (n =​ 278 unique 
inbred samples). c, Kernels at 350-growing-degree days (n =​ 229 unique 
inbred samples). d, Base of leaf three (n =​ 263 unique inbred samples).  
e, Tip of leaf three (n =​ 265 unique inbred samples). f, Adult leaves 
collected during the day (n =​ 204 unique inbred samples). g, Adult leaves 
collected at night (n =​ 260 unique inbred samples).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 5 | eQTL R2 distribution comparisons between 
SNPs in 0.0–0.1 (tropical MAF) and 0.1–0.2 (RNA-set MAF) versus 
0.1–0.2 (RNA-set and tropical MAF). a, Adult leaves collected at night 
(n =​ 260 unique inbred samples). b, Adult leaves collected during the 
day (n =​ 204 unique inbred samples). c, Tip of leaf three (n =​ 265 unique 
inbred samples). d, Base of leaf three (n =​ 263 unique inbred samples).  

e, Kernels at 350-growing-degree days (n =​ 229 unique inbred samples).  
f, Shoots of germinating seedling (n =​ 278 unique inbred samples).  
g, Roots of germinating seedling (n =​ 273 unique inbred samples). 
All pairs of distributions within each tissue are significantly different. 
P <​ 2.2 ×​ 10−16 two-sided Wilcoxon signed-rank test and Kolmogorov–
Smirnov test.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 6 | eQTL R2 distribution comparisons between 
SNPs in 0.0–0.1 (tropical MAF) and 0.4–0.5 (RNA-set MAF) versus 
0.4–0.5 (RNA-set and tropical MAF). a, Adult leaves collected at night 
(n =​ 260 unique inbred samples). b, Adult leaves collected during the 
day (n =​ 204 unique inbred samples). c, Tip of leaf three (n =​ 265 unique 
inbred samples). d, Base of leaf three (n =​ 263 unique inbred samples).  

e, Kernels at 350-growing-degree days (n =​ 229 unique inbred samples).  
f, Shoots of germinating seedling (n =​ 278 unique inbred samples).  
g, Roots of germinating seedling (n =​ 273 unique inbred samples). 
All pairs of distributions within each tissue are significantly different. 
P <​ 2.2 ×​ 10−16 two-sided Wilcoxon signed-rank test and Kolmogorov–
Smirnov test.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 7 | Expression value and dysregulation of 5,000 
most-expressed genes are both predictive of fitness. Orange boxes 
represent correlations between predicted and true seed weight when using 
expression values. Yellow boxes represent correlations between predicted 
and true seed weight when using absolute deviation in expression from the 
population mean. Range of correlations between predicted and true seed 
weight is displayed from ten repetitions of nested tenfold cross validation 
(ten inner and ten outer) using ridge regression. In the box plots, the 
middle horizontal lines represent the median, hinges represent the 

25th and 75th percentiles (the interquartile range), the upper and lower 
whiskers extend to maximum and minimum points no more than 1.5×​ 
interquartile range beyond the hinges, and individual dots are outliers 
beyond the whiskers. Sample sizes: 2-cm root tips of germinating seedlings 
(unique n =​ 181) and whole shoots of germinating seedlings (unique 
n =​ 183); the 2-cm base (unique n =​ 181) and tip (unique n =​ 182) of  
leaf 3; leaves collected in the field during the day (unique n =​ 135) and 
night (unique n =​ 187); and 350-growing-degree-day kernels (unique 
n =​ 171), post sexual maturity (anthesis).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 8 | Cumulative expression dysregulation of the 
5,000 most-expressed genes in each tissue versus seed weight. a, Adult 
leaves collected at night (n =​ 221 unique inbred samples). b, Adult leaves 
collected during the day (n =​ 171 unique inbred samples). c, Tip of leaf 
three (n =​ 226 unique inbred samples). d, Base of leaf three (n =​ 224 

unique inbred samples). e, Kernels at 350-growing-degree days (n =​ 195 
unique inbred samples). f, Shoots of germinating seedling (n =​ 235 unique 
inbred samples). g, Roots of germinating seedling (n =​ 226 unique inbred 
samples). Regression statistics in Extended Data Table 1. Sweet corn and 
popcorn lines were excluded from these regressions.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 9 | Mean upstream rare-allele count from the 
5,000 most highly expressed genes versus seed weight. a, Adult leaves 
collected at night (n =​ 221 unique inbred samples). b, Adult leaves 
collected during the day (n =​ 171 unique inbred samples). c, Tip of leaf 
three (n =​ 226 unique inbred samples). d, Base of leaf three (n =​ 224 

unique inbred samples). e, Kernels at 350-growing-degree days (n =​ 195 
unique inbred samples). f, Shoots of germinating seedling (n =​ 235 unique 
inbred samples). g, Roots of germinating seedling (n =​ 226 unique inbred 
samples).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Table 1 | Regression statistics for cumulative expression dysregulation in each tissue against seed-weight fitness

Sample size n refers to genetically unique inbred samples after excluding sweet corn and popcorn lines.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample size (mean 255 individuals per tissue) was chosen 
based on the availability of lines with WGS data. Para. 3-4. Additionally, previous 
studies demonstrated the ability to map eQTL with < 300 individuals (see GTEx).

2.   Data exclusions

Describe any data exclusions. To eliminate samples which were potentially collected into the wrong tube(errors), 
RNAseq data were used to call SNPs  from the first 20 mb of chr 10 and these SNPs 
were matched to existing WGS DNAseq variant calls in the Maize HapMap. 
Expression profiles from the middle of leaf three were also excluded because the 
sample size for that tissue was below 50.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

The results were replicated across 7 tissues which were collected and sequenced 
separately. Additionally, during revisions independent expression data from a 
previous publication (Hirsch et al PlantCell 2014) was also used to replicate the 
results linking rare alleles to dysregulation by quadratic regression.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Field grown plants were planted in 4 randomized blocks based on maturity dates 
so that collection would coincide. Growth chamber and greenhouse grown plants 
were completely randomized and rotated each day.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

The investigators were not blinded to the maize lines being used nor the tissues 
being collected.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Robotic code, Java code, and custom R and Unix scripts are released through the 
following websites as described at the end of the paper and from the authors:  
http://www.maizegenetics.net/robotic-code 
http://www.maizegenetics.net/tassel  
https://github.com/Fei-Lu/FastCall

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.
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