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Abstract
Next-generation sequencing technology such as genotyping-by-
sequencing (GBS) made low-cost, but often low-coverage, whole-
genome sequencing widely available. Extensive inbreeding in 
crop plants provides an untapped, high quality source of phased 
haplotypes for imputing missing genotypes. We introduce Full-Sib 
Family Haplotype Imputation (FSFHap), optimized for full-sib popu-
lations, and a generalized method, Fast Inbred Line Library Im-
putatioN (FILLIN), to rapidly and accurately impute missing geno-
types in GBS-type data with ordered markers. FSFHap and FILLIN 
impute missing genotypes with high accuracy in GBS-genotyped 
maize (Zea mays L.) inbred lines and breeding populations, while 
Beagle v. 4 is still preferable for diverse heterozygous popula-
tions. FILLIN and FSFHap are implemented in TASSEL 5.0.

The number of genotyped individuals available to 
researchers has vastly increased in recent years due 

to the advent of low-cost, genome-wide genotyping plat-
forms, such as GBS (Elshire et al., 2011). Genotyping-
by-sequencing provides a reduced representation of the 
genome by targeting sequences adjacent to restriction 
enzyme cut sites, enabling parity in read location across 
samples. By adding barcoded adaptor sequences to the 
restriction-digested DNA, up to 384 samples can be mul-
tiplexed in one flowcell lane. However, the resulting GBS 
data may have high rates of missingness and heterozygote 
undercalling, depending on genome size, genome struc-
ture, and the number of samples combined. To effectively 
use GBS sequence data while maintaining low costs, we 
need a mechanism to impute these missing genotypes.
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Missing data is often a function of genome size and 
degree of multiplexing, where some sequences are simply 
not sampled when the genome size is large or many sam-
ples are combined in a flowcell. Heterozygote undercalling 
is also a function of low-coverage sampling; to call a het-
erozygote for a given genotype, that genotype must be cov-
ered by at least two reads, and those reads must be from 
different sister chromatids. In the case of maize, based on 
sampling from a Poisson distribution with a lambda value 
of 0.6 (the average coverage for maize GBS data), we expect 
only 12% of the genome to be sampled two or more times, 
providing an upper limit for correct heterozygous single 
nucleotide polymorphism (SNP) calls.

Missing data can also reflect true biologically miss-
ing sequence due to small insertions or deletions or larger 
structural variants in the genome. Because these missing 
data provide a real biological signal, it is desirable to cap-
ture this type of missing data in imputation. In maize, for 
example, not only is allelic diversity high (Vigouroux et 
al., 2008), but 70% of genes and 90% of the genome shows 
structural variation in a panel of only 103 diverse inbred 
maize and teosinte [Z. mays subsp. mexicana (Schrad.) 
H. H. Iltis] lines (Chia et al., 2012). Maize is not unique in 
this respect; many agronomically important crop plants 
show a similar pattern of high structural variation and 
allelic diversity (Bhullar et al., 2010; Hurwitz et al., 2010; 
Schnable et al., 2011; Ramu et al., 2013; Das et al., 2013).

Accurate imputation benefits downstream applica-
tions such as genome-wide association and linkage map-
ping studies by accurately identifying rare variants, which, 
in turn, increases the power to detect statistical associa-
tions (Spencer et al., 2009; Cleveland et al., 2011). Imputa-
tion is expected to provide the greatest benefit for mapping 
studies when linkage disequilibrium (LD) between mark-
ers is low. This is often the case in natural populations or 
primarily outcrossing species, since fewer markers are 
present on each haplotype to tag a statistical genotype-
phenotype association (Spencer et al., 2009). Even crop 
species, which often have extended LD as a result of breed-
ing efforts, only share short haplotypes when comparing 
distantly related individuals. Accurate imputation is thus 
critical for effectively using the output of low-coverage, 
low-cost genotyping platforms such as GBS.

While accurate imputation increases the value of low-
cost, low-coverage genotyping, much of the available soft-
ware for imputation has been tailored for humans (Howie 
et al., 2009; Browning and Yu, 2009; Liu et al., 2013). 
Humans, in contrast to many economically valuable plant 
species, are highly heterozygous, obligate outcrossers with 
no controlled mating designs, little inbreeding, and much 
less structural variation than that observed in crop plants 
(Ross-Ibarra et al., 2009; Buckler et al., 2009; Chia et al., 
2012). Because of this, the publically available algorithms 
designed for humans are not optimized to accurately 
impute or leverage unique information from crop systems. 
That we can reasonably assume phase for inbred lines 
and inbred segments from crop plants suggests a differ-
ent model for genotype imputation is needed. While there 

are crop specific algorithms that have been developed for 
unordered markers (Rutkoski et al., 2013), for known pedi-
grees (Meuwissen and Goddard, 2010), and in the context 
of genomic prediction (Daetwyler et al., 2011; Hickey et al., 
2012), most of these are not publically available or do not 
output imputed genotypes.

A number of agronomically important systems use 
inbred lines extensively (e.g., maize, rice, wheat, soybean, 
barley, sorghum), and many of these have structured pop-
ulation resources for mapping traits of interest (McMullen 
et al., 2009; Diers et al., 2011; Mace et al., 2013). Very accu-
rately mapping the recombination break points in these 
populations is desirable for fine mapping studies and for 
appropriately assigning effect estimates to the proper par-
ent in association studies. We present here FSFHap, a fast 
and accurate imputation algorithm for ordered genotypes, 
optimized for full-sib families. FSFHap follows methods 
published for detecting recombination breakpoints in Dro-
sophila (Andolfatto et al., 2011; King et al., 2012).

We also present FILLIN, a fast and accurate general-
ized imputation strategy built on the FSFHap algorithm 
that leverages inbred segments from large but sparse geno-
typic datasets to identify parental haplotypes and impute 
missing genotypes in systems with previously ordered 
markers. Both FILLIN and FSFHap allow for missing data 
in the imputed genotypes, capturing structural variation 
hidden in sparse genotypic data. We find from GBS data 
that many breeding programs have some small level of 
contamination and pedigrees are not always consistent 
with information on relatedness from genotypes. Because 
FILLIN and FSFHap do not require known parental geno-
types, these algorithms provide pedigree independent 
imputation. Because populations in crop plants are often 
large, computational time for FILLIN is reduced by using 
bit level operations and multithreading, and is designed 
to scale linearly to enable fast breeding decisions. Both the 
FSFHap and FILLIN algorithms are implemented in TAS-
SEL 5.0 (Bradbury et al., 2007).

We compare the speed and accuracy of our novel 
algorithms on inbred and outbred maize (Zea mays) 
genotyped using GBS (Elshire et al., 2011) with Beagle v. 
4 (Browning and Browning, 2013). Beagle v. 4 was chosen 
because in early tests we found it to be the most powerful 
and comparable algorithm available; it does not require an 
external haplotype library, it accepts high levels of missing 
data, and it has the computational speed to impute whole 
genomes or chromosomes. We also compare accuracy 
between FSFHap, FILLIN, and Beagle v. 4 in a full-sib 
family recombinant inbred line (RIL) population.

Materials and Methods

Algorithms
Viterbi Algorithm
Both FSFHap and FILLIN rely on a Hidden Markov 
Model (HMM) to detect recombination break points 
between haplotypes. The HMMs define genotype as the 
true, unobserved genotype and the SNP or sequence 
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variant calls made by the sequencing pipeline as the 
observations. Using this formulation, the problem of 
imputation can be restated as the problem of determin-
ing the unobserved genotype that best explains the 
observed data. If for a given sample, y is a vector of the 
observed SNP calls; g is a vector of unknown, unob-
served genotypes; and M is a probability model describ-
ing the data and the genotypes. Then, one approach is to 
seek to maximize the likelihood (L):

L(y|g, M). 

In general, maximizing L for genotypes of n sites 
requires evaluating this likelihood for each of 2n pos-
sible genotypes, an impossible task for 100 markers, let 
alone for the hundreds of thousands of markers in the 
data described here. Fortunately, because nucleotides are 
arranged sequentially on a chromosome, the problem 
can be modeled as a Markov chain. Doing so allows the 
use of the Viterbi algorithm (Rabiner, 1989) to identify 
the genotype, g, that maximizes the likelihood of the 
observed data. The Viterbi algorithm only needs to eval-
uate a small, tractable subset of the potential genotypes 
to maximize the likelihood.

Applying the Viterbi algorithm requires defining 
two separate probability matrices. Taken together, these 
two probability matrices determine M, the probability 
model. The first is a transition probability matrix, which 
describes the probability of each possible genotype at a 
site given the genotype at the previous site for all pos-
sible genotypes at the previous site. The second is an 
emission probability matrix, which describes the prob-
ability of observing each possible allele call, given each 
possible genotypic state. This probability matrix has to 
capture both the probability of a genotyping error and 
the probability that only one of the two possible alleles 
was observed at a heterozygous site, which results in that 
site being incorrectly scored as homozygous. In a clas-
sic hidden Markov chain, both probability matrices are 
constant across all sites. In our application, we treat the 
emission probabilities as constant, but allow the transi-
tion probability to vary depending on distance between 
sites and location in the genome.

Both the transition and emission matrices are esti-
mated from the data set being imputed, which is known to 
contain errors. An expectation-maximization method is 
used to improve that estimate. Because the imputed data 
provides a better indication of the actual genotypes than the 
original data, after the initial imputation, the imputed states 
can be used to make new estimates of the probability matri-
ces. This process is repeated to convergence. Estimating the 
probability matrices is the expectation step. Applying the 
Viterbi algorithm constitutes the maximization step.

Initializing the Matrices
Many of the DNA samples in our data (as is com-
mon with other crop studies) were created by bulking 
DNA from several plants. Most were presumed to be 

homozygous but often had residual heterozygosity or 
heterogeneity. Typically, the bulked plants were progeny 
of a single self-pollinated plant. In that case, the progeny 
represented a random sample of 2n gametes from the 
parent, where n is the number of progeny bulked. As a 
result, for a single bulked sample, the minor allele fre-
quency (MAF) at a heterozygous site, instead of being 0.5 
as it would have been for a DNA sample of a single parent 
plant, ranged from 0 to 0.5 with probabilities equal to 2n 
draws from a binomial distribution with p = 0.5. Within 
a sample, the allele frequencies at adjacent segregating 
sites will be expected to be the same, since they all rep-
resent the same sample. To accommodate chromosome 
segments with different allele frequencies, we allow for 
five genotype states, representing homozygous A, 3A:1B, 
1A:1B, 1A:3B, and homozygous B. The initial emission 
probabilities were set as shown in Table 1.

The transition probabilities between states at adja-
cent sites are calculated differently for the two algorithms 
we present here. For FILLIN, the transition matrix is 
fixed (Table 2). For FSFHap, the transition matrix is 
dependent on the expected rate of recombination and 
the distance between the sites. The transition probability 
between the different states was estimated using all inter-
vals between nonmissing markers, then adjusted based 
on the ratio of the actual interval to the average interval 
length. An initial estimate was based on expected recom-
bination rates. Convergence of the expectation-maximi-
zation algorithm is not dependent on the initial estimate 
as long as it is reasonable.

Full-Sib Family Haplotype Imputation
As with most imputation methods, FSFHap begins 
by identifying haplotypes. In the case of a biparental 
population when the objective is to find recombination 

Table 1. The Viterbi algorithm initial emission probabil-
ity matrix, P(Allele Call|State). Note that all of the rows 
sum to 1.

State

Allele Call

A H B

AA 0.998 0.001 0.001
3A:1B 0.6 0.2 0.2
1A:1B 0.4 0.2 0.4
1A:3B 0.2 0.2 0.6
BB 0.001 0.001 0.998

Table 2. The Viterbi algorithm transition probability 
matrix for Fast Inbred Line Library ImputatioN (FILLIN).

State AA 3A:1B 1A:1B 1A:3B BB

AA 0.999 0.0001 0.0003 0.0001 0.0005
3A:1B 0.0002 0.999 0.00005 0.00005 0.0002
1A:1B 0.0002 0.00005 0.999 0.00005 0.0002
1A:3B 0.0002 0.00005 0.00005 0.999 0.0002
BB 0.0005 0.0001 0.0003 0.0001 0.999
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breakpoints, the interest is in determining which chromo-
some segments are identical by descent (IBD) from which 
parent. The algorithm thus attempts to identify exactly 
two parental haplotypes, ignoring any sites that happen 
to be heterozygous in either of the parents. The algorithm 
as written has not been tested for families derived from a 
cross between outbred, heterozygous parents but handles 
segments that are heterozygous in one parent by using 
only the homozygous sites in those segments.

One assumption of the Viterbi algorithm is that the 
probability of an error at one site is independent of other 
sites, which is not necessarily the case for sites in the 
same GBS sequence read. Consequently, before identify-
ing parental haplotypes, if any SNP pair came from the 
same tag, one of the pair is deleted from the dataset. Next, 
within each biparental family, the algorithm clusters lines 
in a window of 50 variant sites at the beginning of a chro-
mosome using a custom clustering method (described 
below). Large clusters identify parental haplotypes, while 
small clusters are generally heterozygous or contain 
individuals with genotyping errors. If the first window 
tested has more than two large clusters, the next adjacent 
window is checked until a window with only two large 
haplotype clusters is found. Once a window is found meet-
ing that criterion, it serves as an anchor for determining 
the next haplotype block. Starting immediately after the 
anchor window, the allele calls for subsequent sites are 
evaluated one at a time. Labeling the two anchor haplo-
types A and B, if a site’s allele calls for RILs in haplotype 
A are mostly the same and the allele calls for the RILs in 
haplotype B are mostly different from the haplotype A 
majority allele, the site is assigned to the correct haplotype. 
Otherwise the site is removed from the dataset. The major-
ity allele within the respective haplotypes is recorded and 
the next adjacent site evaluated. Once alleles have been 
assigned to A and B for 50 additional sites, these 50 sites 
become the new anchor window. Two clusters are formed 
of lines that are within a minimum distance of each of 
the two new haplotype sequences. The entire process is 
repeated to extend each haplotype another 50 sites until 
the end of the chromosome is reached.

Once the parental haplotypes are identified, the prog-
eny are scored as Parent A, Parent B, or heterozygous at 
each site. Then, for each of the progeny individually, the 
Viterbi algorithm is applied to the nonmissing sites to 
determine the most likely genotype given the observa-
tions. The missing sites are then imputed based on the 
flanking nonmissing markers. If the flanking mark-
ers match (both are A, B, or H), then the missing site is 
imputed to the same value as the flanking markers; other-
wise it is left missing. Finally, the sites are converted back 
to nucleotides by examining the original nucleotide calls 
of all the individuals in the A and B classes at each site.

Custom Clustering Method
Because of data scarcity, standard hierarchical cluster-
ing methods perform inadequately for classifying hap-
lotypes formed from a limited number of sites. Of these, 

the complete method, which calculates distance between 
clusters as the maximum pairwise distance, gives the most 
useful results. The algorithm described here modifies that 
method by defining distance between two haplotypes as 
the sum of the differences across sites, where a site differ-
ence is 2 for different homozygotes, 1 if one site is homo-
zygous and the other heterozygous, or 0 if either haplotype 
had a missing value. Further, each cluster contains all of 
the individuals less than a given distance from all the other 
individuals in the cluster. Because of missing data, this 
means some individuals could belong to more than one 
cluster. Each cluster is interpreted as all the individuals 
that could have the same genotype for the entire window. 
Because heterozygous sites are often called as one of the 
possible homozygotes at random, heterozygous individuals 
do not form large clusters. A useful measure of cluster size 
is the sum of 1/(the number of clusters to which an indi-
vidual belonged) over the individuals in a cluster.

Fast, Inbred Line Library ImputatioN
FILLIN is optimized to leverage inbred segments for fast 
imputation in very large, sparse datasets. Like other algo-
rithms, we separate haplotype generation and imputation 
(Howie et al., 2009; Liu et al., 2013). FILLIN first gener-
ates high coverage haplotypes from inbred lines and 
inbred segments by dividing the genome into nonover-
lapping windows. Within each window, the Hamming 
distance is used to cluster sequences that share highly 
similar genotypes, and these clusters are then collapsed 
to generate higher-coverage haplotypes. To calculate dis-
tance, sites with a missing genotype call in either taxon 
are ignored and the distance between a heterozygous 
and homozygous genotype is considered to be half the 
distance of one homozygous genotype to the alternate 
homozygote. To best represent high levels of structural 
variation, we do not require complete coverage for the 
resulting haplotypes. Additionally, a small amount of 
residual heterozygosity propagates to the resulting hap-
lotype donor files, as the algorithm makes no effort to 
phase residual heterozygous genotypes. This approach 
results in very fast haplotype generation (Fig. 1), but is 
less sensitive than other algorithms if the samples are 
highly heterozygous, since we make no effort to phase 
(Gusev et al., 2009; Browning and Browning, 2011, 2013). 
The haplotype generation step should always be per-
formed with all of the samples available, as (i) small-scale 
haplotype windows may be replicated across even geneti-
cally distant individuals, and (ii) the algorithm requires 
at least two samples to generate a haplotype by default.

To impute these higher coverage haplotypes back to 
the target samples, FILLIN takes an iterative approach to 
imputation. First it selects possible donors based on shared 
minor alleles within each window. Shared minor alleles 
are particularly informative, since most of the minor 
allele states derive from more recent mutation and when 
two taxa share these alleles it suggests recent common 
ancestry. FILLIN then ranks haplotype donors by genetic 
distance to the taxon being imputed (again, looking only 
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within the current window); if the distance falls below a 
user-specified threshold, it then imputes one haplotype 
to the entire window (1a in Fig. 2). If this fails, and the 
taxon is modeled as inbred based on global heterozygos-
ity, the algorithm looks for two donors that can together 
adequately explain the minor alleles in the entire window 
(1b in Fig. 2). This assumes and models for a recombina-
tion break point between two known haplotypes, and it 
uses the above Viterbi Hidden Markov algorithm to decide 
where to switch. The Viterbi is run in both directions, with 
disagreements defaulting to the genotype with the longest 
path length (i.e., highest likelihood).

If one or two donors cannot be found to explain 
the entire window, the algorithm repeats this process 
for smaller, 64-site windows within the larger window. 
Each 64-site window serves as a focus, and the algo-
rithm extends out right and left until this window (the 
“focus block”) contains a minimum number of minor 
alleles to calculate Hamming distance. FILLIN then 
attempts to impute based on single haplotype (2a in Fig. 
2) and the two-haplotype (2b in Fig. 2) Viterbi imputa-
tion, if distance between the donor and target falls below 
a threshold. If these attempts fail to explain sufficient 
minor alleles, the algorithm will then find two haplotypes 
that explain the minor alleles at a higher error threshold, 
combine these two haplotypes, and impute using this 
combined haplotype sequence, modeling the region as 
heterozygous (2c in Fig. 2). If this search fails, that 64-site 
window will not be imputed. Because low-coverage 
sequence data often results in undercalling heterozygotes, 
an option to resolve homozygotes predicted to be hetero-
zygous is available for all imputation types except 2c.

The maximum genetic distance thresholds for the 
focus block are customizable by the user, but by default 
are set more stringently than those for the entire window 
since the focus blocks are shorter and are expected to 
contain fewer sequencing errors if the haplotype is truly 
IBD to the target. These thresholds are also different for 

outbred versus inbred taxa, since when two haplotypes 
explain the minor alleles of a target sequence in an out-
bred taxon, it is more probable that the target sequence is 
heterozygous rather than a segment containing a recom-
bination between two inbred haplotypes. For a taxon 
that falls above a user-defined per taxon heterozygosity 
threshold (is outbred), the threshold for using Viterbi (2b) 
is set to 0. If a taxon is considered generally inbred, any 
discrepancy between the two combined haplotypes that 
generates a heterozygous genotype (2c), is set to missing.

Comparison with Existing Algorithms
FILLIN differs from other available algorithms, most of 
which have been designed for human-derived sequence 
data, primarily in its approach to haplotype generation, 
phasing, and inbreeding assumptions (Howie et al., 2009; 
Browning and Yu, 2009; Liu et al., 2013; Browning and 
Browning, 2013). Imputation algorithms either generate 
haplotypes de novo or rely on a densely genotyped refer-
ence panel, such as 1000 Genomes, which are not available 
for most species. The public algorithms that generate de 
novo haplotypes implicitly assume that the unimputed 
individuals have significant heterozygosity and must be 
phased (Browning and Yu, 2009; Browning and Brown-
ing, 2013). In the case of Beagle v. 4, this increases runtime 
exponentially by the number of samples (Fig. 1). However, 
if haplotypes really do only exist in the heterozygous state, 
Beagle’s refined IBD (Browning and Browning, 2013) algo-
rithm should find these segments better than FILLIN and 
thus make the extra computation worthwhile. In contrast, 
FILLIN allows for significant inbreeding in the target 
population and saves computational time by first check-
ing for high similarity between one of the haplotypes and 

Figure 1. Fast Inbred Line Library ImputatioN (FILLIN) when only 
target genotypes for imputation used to generate donors, using 
the nested association mapping (NAM) recombinant inbred lines 
(RILs), diverse inbred lines, and heterozygous, diverse landraces. 
Within each population, each data set is a random subsample of 
the larger data set; only chromosome 10 was imputed.

Figure 2. Fast Inbred Line Library ImputatioN (FILLIN) algorithm 
overview. FILLIN first tries to impute the entire site window with 
one (1a) or two (1b) haplotypes (using the Viterbi Hidden Markov 
Model [HMM] to model the recombination break point), then 
if that is unsuccessful tries to impute for smaller windows, first 
with one haplotype (2a), then two with Viterbi (2b), finally by 
combining two haplotypes to model heterozygosity (2c). If this 
does not satisfy (lower) error thresholds, the smaller window is 
not imputed. Refer to methods for detailed description of 1a–2c. 
Dashed arrows mean that the algorithm continues if conditions 
are not satisfied for imputation.
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the target sequence. FILLIN and Beagle v. 4 both differ 
from many other algorithms (Purcell et al., 2007; Howie 
et al., 2009; Liu et al., 2013) in that they can impute whole 
genomes or chromosomes in one run.

Test Datasets and Analysis Optimizations
Test Datasets
We tested the FILLIN and FSFHap algorithms against 
Beagle v. 4 (Browning and Browning, 2013), which we 
found in preliminary tests to be the most comparable 
available algorithm: it can generate haplotypes, tolerate 
high levels of missing data, and impute entire chromo-
somes with tens of thousands of markers in one run. We 
also compare against a naive imputation method, which 
imputes missing genotypes based solely on allele frequen-
cies in the unimputed data. We compare results from 
three distinct maize datasets genotyped using maize GBS 
build v. 2.7 (Glaubitz et al., 2014): (i) 429 replicate samples 
representing 287 related temperate inbred Ex-PVP and 
Iowa breeding lines (temperate inbreds; Romay et al., 
2013), (ii) 467 replicate samples from a panel of well-stud-
ied 282 diverse inbred lines from around the globe (Flint-
Garcia et al., 2005; diverse inbreds), and (iii) 366 outbred 
(highly heterozygous) landraces where one half originate 
from the American Southwest, one quarter from the rest 
of the Americas (Heerwaarden et al., 2011), and one quar-
ter from Spain (Revilla et al., 2003; diverse landraces). 
A fourth dataset, a RIL population of full-sib families 
from the maize nested association mapping (NAM) panel 
(McMullen et al., 2009), is used to compared FSFHap to 
FILLIN and Beagle v. 4. Each dataset is genome-wide and 
filtered so that only polymorphic sites with 10% minimum 
coverage and taxa with 10% sites present are retained.

FSFHap conducts additional filtering on the NAM 
RIL population before imputation. Because each of the 
individual NAM full-sib families was derived from three 
distinct F1 ears and because some parents had residual 
heterozygosity, any given site might be polymorphic in 
one subfamily and monomorphic in another. To deal 
with this after the parental haplotypes were identified for 
each family, the individual subpopulations were checked 
to make sure each site was more likely to be segregating 
1:1 than to be monomorphic. Any site determined to 
be monomorphic in a subpopulation was set to miss-
ing within that subpopulation. At the same time, each 
site was checked to make sure it was in LD with all its 
neighbors within a 30-site window. Because of occasional 
contamination by foreign pollen during the inbreeding 
process, a few individual RILs carry substantial amounts 
of nonparental DNA. To find individuals containing 
significant amounts of nonparental DNA, after an initial 
imputation, individuals that were more than 30% hetero-
zygous were removed from the data set and the families 
reimputed from the original data.

Haplotype Generation
FILLIN generates haplotypes using a GBS-derived data-
set of 40,992 samples, one-eighth of which are outbred 

landrace accessions, and the rest are made up of diverse 
inbred maize lines, inbred teosinte, and biparental map-
ping and breeding populations. FILLIN generated hap-
lotypes are publically available on panzea.org (verified 4 
Sept. 2014) and will be updated periodically as new data 
becomes available. The populations tested in this manu-
script are included in the 40k taxa dataset, increasing 
the probability that their haplotypes are included in the 
haplotype donor file. Beagle v. 4 has no mechanism to 
use FILLIN haplotypes as input due to residual missing 
data and could not internally generate haplotypes from 
such a large dataset. Thus, for all Beagle runs, Beagle uses 
haplotypes internally generated from the target samples 
only, but all available replicate samples for each inbred 
line were input into Beagle. We expect that FILLIN will 
typically use haplotypes generated from samples beyond 
just those targeted for imputation, but in Fig. 1 we pro-
vide results of FILLIN accuracies for inbred and outbred 
populations of various sizes imputed with haplotypes 
generated from the target samples only.

Masking and Calculating Accuracy
To calculate accuracy, we masked a subset of known 
genotypes with high read-depth (exactly seven reads 
per site) and with a physical position divisible by seven. 
If GBS can be expected to sample either diploid chro-
mosome equally, the probability that a heterozygous 
genotype with a read depth of seven is called as a homo-
zygote for either the major or minor allele is P(AA|Het) 
+ P(BB|Het) = 0.57 + 0.57 = 0.0157. Additionally, only het-
erozygote calls supported by at least two reads for both 
alleles were masked to exclude calls based on potential 
sequencing errors. Because we only masked a subset of 
genotypes with a read depth of seven, we can compare 
the distribution of read depths at sites where seven-read 
depth sites are masked versus sites where they are not. 
Figure 3 shows that the sites that contain masked geno-
types have the same read depth distribution relative to 
sites without masked genotypes suggesting that sampling 
these genotypes for accuracy calculation is reasonable.

For all of the datasets tested, we chose to quantify 
accuracy using the coefficient of determination, R2, ver-
sus a more simplistic measure, such as total percentage 

Figure 3. Sites that contain masked genotypes show the same 
read depth distribution as sites without masked genotypes, sug-
gesting that masked genotypes are representative and accept-
able for calculating accuracy.
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accuracy where known genotypes are coded as categori-
cal variables. We did this because the great majority of 
genotypes masked are of the major allele, skewing the 
accuracy calculation towards imputation accuracies for 
this genotypic class (Table 3). Because minor alleles are of 
most interest in downstream applications and the harder 
allele to predict, we chose to use R2 to better represent the 
capabilities of the different methods. To calculate R2, we 
compared masked to imputed genotypes with the major 
allele coded as one, the minor as 0, and heterozygotes 
as 0.5. Unimputed genotypes are not reflected in the R2 
calculation except as a decrease in the number of geno-
types compared.

Computational Time and Algorithm Parameters
FILLIN and Beagle v. 4 were run on two 6-core Intel Xeon 
E5 2620 with 2 GHz CPU, 4TB SATA HD, 1TB SSD HD, 
and 128GB RAM. Beagle v. 4 was run using the default 
parameters, with no external pedigree information or 
reference panel. FILLIN was run with a window size of 
8000 sites. Haplotypes were required to have a minimum 
site presence of 0.6, and the maximum genetic divergence 
between samples to generate haplotypes was set to 0.01. 
For imputing haplotypes to the target sequences, 20 infor-
mative minor sites were required within a search window 
and up to 20 haplotype donor hypotheses were explored 

for a given window. The maximum genetic distance 
between the haplotype donor and target taxon to impute 
one haplotype for the entire sites window (1a in Fig. 2) 
was set to 0.01, and the maximum distance to impute two 
haplotypes was set to 0.003 (1b in Fig. 2). To impute donors 
to the smaller focus windows (64-site focus, but extended 
so that the focus window covers 20 informative sites) when 
the whole-block imputation thresholds were breached, 
the settings for imputing two haplotypes to inbred lines 
(with heterozygosity below 0.02) with Viterbi (2b in Fig. 
2), one haplotype (2a in Fig. 2), or the combined hybrid 
haplotype (2c in Fig. 2) were set to 0.001, 0.003, and 0.01. 
For heterozygous genotypes, these thresholds were set to 
0, 0.001, and 0.01. Genotypes were not imputed if these 
thresholds were not met. All of these thresholds values can 
be optimized for different needs, but the values above are 
the default values for FILLIN.

Results
The NAM RILs consist of 25 biparental families with 
around 200 F6 progeny each (Table 4). They have an 
average of 0.3X coverage per site, are polymorphic in 
at least one family at 556,000 sites across the genome, 
and are highly inbred. Average heterozygosity per line 
before imputation is approximately 0.001. While for each 
family we expect MAF of 0.5, across the whole popula-
tion, MAFs are very low (Fig. 4). To test FILLIN versus 
Beagle, we test three maize datasets differing in degree 

Table 3. Coefficient of multiple determination (R2), ab-
solute proportion correct, and accuracies by known 
genotype, with the most accurate method for each 
class or population in italics. Note that the absolute 
proportion correct mirrors the accuracy for the major 
allele, while R2 weights the minor alleles more heavily, 
which are more informative for downstream applica-
tions. For the diverse landraces and nested association 
mapping (NAM) recombinant inbred lines (RILs), Fast 
Inbred Line Library ImputatioN (FILLIN) is only more 
accurate for heterozygotes (Het) because it attempts 
many fewer imputations for that genotype class.

Test dataset R 2 Absolute Minor Het Major

Temperate inbreds

Naive 0.046 0.642 0.116 0.348 0.748

Beagle v. 4 0.942 0.984 0.956 0.452 0.993

FILLIN 0.986 0.996 0.993 0.252 0.999
Diverse inbreds

Naive 0.04 0.641 0.105 0.334 0.75

Beagle v. 4 0.883 0.97 0.905 0.484 0.986

FILLIN 0.99 0.996 0.993 0.322 0.999
Diverse landraces

Naive 0.064 0.643 0.116 0.358 0.762

Beagle v. 4 0.662 0.892 0.698 0.656 0.957
FILLIN 0.583 0.85 0.57 0.698 0.905

NAM RILs

FSFHap 0.974 0.99 0.968 0.846 0.995
FILLIN 0.971 0.991 0.97 0.858 0.995
Beagle v. 4 0.948 0.985 0.956 0.596 0.994

Figure 4. Minor allele frequency (MAF) densities for the unim-
puted datasets used for this study. For the recombinant inbred 
lines (RILs), the MAF was calculated in each biparental family 
separately, and combined. Populations sizes are as follows: tem-
perate inbreds (429), diverse inbreds (367), diverse landraces 
(366), nested association mapping RILs (4667).

Table 4. Raw datasets used for analysis.

Dataset

No.  
filtered  

taxa

No.  
segregating  

sites

Avg.  
proportion 

present

Avg. proportion 
heterozygous 

(± SE)

Temperate inbreds 429 443,036 0.431 0.003 ± 0.004
Diverse inbreds 467 545,154 0.462 0.003 ± 0.005
Diverse landraces 366 600,724 0.509 0.052 ± 0.017
NAM RILs† 4776 556,001 0.301 0.003 ± 0.002
† NAM, nested association mapping; RILs, recombinant inbred lines.
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of inbreeding and haplotype diversity. All have approxi-
mately 0.5X coverage per site and range in average het-
erozygosity from 0.001 to 0.029 (Table 4). The number 
of polymorphic sites across the genome ranges from 
433,000 to 600,000. As the datasets become more diverse, 
there is an increased skew towards rare alleles (Fig. 4).

For the full-sib NAM RILs, FSFHap and FILLIN 
performed very similarly, but FSFHap imputed more 
heterozygous sites with increased accuracy. Both algo-
rithms outperformed Beagle v. 4 (Fig. 5). As expected, 
all algorithms performed far better than the naive allele 
frequency imputation for all datasets tested with FILLIN 
and Beagle v. 4 (Fig. 6). FILLIN outperformed Beagle v. 
4 for closely related and diverse inbred lines (Fig. 6A,B), 
but Beagle v. 4 outperforms FILLIN for heterozygous 
landraces (Fig. 6C), as well as the few residual heterozy-
gous sites in inbred lines (Fig. 7).

For all of the inbred datasets (diverse, temperate, and 
RILs), FILLIN most often imputed the whole site window 
with one haplotype or two, using the Viterbi algorithm to 
model recombination breakpoints (Table 5). The temper-
ate inbreds, although they are more closely related, use 
the focus block imputation more often than the diverse 
inbreds, and this may explain their slightly decreased 
accuracy and suggest more residual heterozygosity in 
these lines. The landraces almost never impute using the 
whole site window, which is expected given their high 
heterozygosity and increased historical recombination. 
The landraces also use the two combination haplotype 
modes more often, and set more focus blocks to missing, 
reflecting a lack of accurate haplotypes.

The stringency settings chosen for FILLIN, which are 
also the defaults for the algorithm, were decided empiri-
cally based on these data, and were optimized for accu-
racy in inbred and breeding populations. Changing these 
thresholds leads to an increased number of genotypes 
imputed, but at the cost of accuracy. For the landrace 

populations especially, loosening the requirements rap-
idly leads to decreased accuracies while never imputing 
>60% of the minor alleles.

The gain in accuracy for FILLIN derived from more 
accurate imputation of minor alleles (Fig. 7). Figure 8 
suggests that the increase in accuracy for minor alleles 
derives from FILLIN’s insensitivity to the MAF. Gain in 
accuracy from accurate imputation of minor alleles is 
especially true for inbred lines (Fig. 7) and suggests that 
MAF insensitivity results from imputing one haplotype 
onto the inbred regions of the target taxon. For Beagle v. 
4 and FILLIN in heterozygous populations, imputation 
accuracy is otherwise a function of the MAF, where lower 
frequency variants are imputed less accurately (Fig. 8).

These tests suggest that Beagle’s advantage in het-
erozygous populations lies in their haplotype generation 
and phasing RefinedIBD (Browning and Browning, 2013) 
algorithm. FILLIN only draws haplotypes from shared 
identical-by-state segments, implicitly assuming that the 
haplotypes present in heterozygous lines are present as 
inbred regions somewhere in the dataset. This is not nec-
essarily true, either because the inbred line or segment 
containing that haplotype may not have been sampled, or 
because it may not exist in a homozygous state because it 
contains a fatal deleterious allele. To test whether FILLIN 
was imputing landraces with haplotypes derived from 
inbred lines, we trained haplotypes for landrace imputa-
tion on only landraces and found that, when given no 
external information, FILLIN could not generate any 
haplotypes from the landraces until 3000 samples were 
input. For 3000 samples, resulting R2 accuracies are <0.1 
(Fig. 1). FILLIN achieves accuracies of around 0.5 when 
haplotypes are trained on the entire 4k sample dataset 
(Fig. 7). This suggests that only half of the haplotypes 
present in the landraces are present as inbred segments 
in GBS genotyped maize samples, and highlights FIL-
LIN’s inability to phase heterozygotes. However, we 

Figure 5. Accuracy comparison between Full-Sib Family Haplotype Imputation (FSFHap), Fast Inbred Line Library ImputatioN (FILLIN), 
and Beagle v. 4 for full-sib nested association mapping (NAM) recombinant inbred lines (RILs). The diameter of each circle represents 
the proportion within each known genotype class, the values imputed for each class are indicated at the bottom of the plot. Triangles 
mark proportion imputed by each known class; Beagle imputes 100% of missing genotypes. Note that FSFHap imputes more heterozy-
gous sites than FILLIN.
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found that FILLIN performed very well for inbred 
lines and biparental families, albeit not as well as when 
provided additional information. For inbred lines and 
families, accuracy as well as proportion of minor alleles 
imputed increased with sample size (Fig. 1).

Another feature of FILLIN is that it requires at least 
two taxa in a given block to share a haplotype to generate 
a donor. This is done to increase haplotype coverage, and 
to increase the robustness of the donor haplotypes, but 
means that diverse taxa at low coverage may not be rep-
resented in the donor file well (5.68% of masked, unim-
puted polymorphic sites are monomorphic in the donor 
file for the diverse landraces). Figure 1 shows that the 
more diverse the dataset, the more samples are required 
to adequately generate haplotypes.

Figure 7. Gain in accuracy by Fast Inbred Line Library ImputatioN 
(FILLIN) relative to Beagle v. 4. If negative, Beagle is more accu-
rate. FILLIN imputes very few of the masked heterozygotes for the 
Diverse Landraces, so the number of samples for comparison is 
very low, accounting for the apparent gain in accuracy for FILLIN.

Figure 6. Accuracy for (A) temperate inbreds, (B) diverse inbreds, and (C) diverse landraces. The diameter of each circle represents the 
proportion within each known genotype class; the number of genotypes from each genotype class is indicated at the bottom of each 
known class. Note that the two inbred datasets both contain very few heterozygous genotypes relative to homozygous, which explains 
is why the R2 value is affected very little by FILLIN’s poor performance on heterozygous genotypes. Triangles mark proportion imputed 
by each known class; Beagle and the naive allele frequency imputation impute 100% of missing genotypes.
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For all tested datasets, imputation accuracy improved 
when only the consensus genotypes from both imputation 
methods were accepted (Table 6). A consensus approach 
gains from the strengths in each imputation method: FIL-
LIN’s sensitivity to inbred segments and Beagle’s to highly 
heterozygous regions. While it is very difficult to accu-
rately identify and mask structurally missing variation 
in GBS data, the lower R2 for Beagle at sites that FILLIN 
chooses not to impute suggest that FILLIN does provide 
sensitivity to structural variation by allowing for residual 
missing data in the haplotypes. The consensus approach 
also reduces the potential for overimputation, which is 
important in species with high structural variation such 
as crop plants (Chia et al., 2012).

Tests with different sized datasets suggested that the 
gain in computational time by FILLIN relative to Beagle 
increased with sample number: where FILLIN scales 
linearly with sample size, while Beagle runtime increases 
exponentially (Fig. 9). Here again, Beagle performs bet-
ter on heterozygous taxa than inbreds, and vice versa for 
FILLIN, as shown by the change in rank between hetero-
zygous and inbred datasets by method.

Discussion
FILLIN and FSFHap produce highly accurate imputed 
genotypes, especially for closely related populations with 
replicated inbred segments. Cross contamination is dif-
ficult to completely exclude in even controlled crosses, 
and a number of maize GBS genotyped lines contain 
errors in pedigree. Because FILLIN and FSFHap do not 
require known parental genotypes, these algorithms 

provide a pedigree independent imputation method. If 
imputing full-sib families, FSFHap is optimized for mod-
eling recombination, which allows it to more accurately 
impute heterozygotes. Beagle v. 4 provides more accurate 
imputation for highly heterozygous populations.

Accurate and complete haplotype generation is critical 
to high accuracies in both Beagle v. 4 and FILLIN imputed 
datasets. Results in Fig. 8 suggest that the relative gain 
in accuracies for the two algorithms for different types 
of datasets directly reflects the strengths of the two algo-
rithms in haplotype generation. It is impossible in both 

Table 5. Method of imputation for windows averaged across taxa (±1 SE) and proportion of each method for 
those site windows that go into focus block imputation. All populations have 116 windows.

Test dataset

Mode for window Proportion of focus block

Site window Focus block Inbred Viterbi Combo Missing

Temperate inbreds 102.76 ± 0.97 13.24 ± 0.97 0.03 ± 0.0017 0 ± 0 0.84 ± 0.0038 0.13 ± 0.0038

Diverse inbreds 109.54 ± 0.77 6.46 ± 0.77 0.08 ± 0.0025 0 ± 0 0.77 ± 0.0043 0.15 ± 0.0049

NAM RILs† 115.05 ± 0.05 0.93 ± 0.05 0.04 ± 0.0008 0 ± 0 0.63 ± 0.0027 0.34 ± 0.0029

Diverse landraces 2.15 ± 0.37 113.84 ± 0.37 0 ± 0.0001 0 ± 0 0.35 ± 0.0059 0.65 ± 0.0059
† NAM, nested association mapping; RILs, recombinant inbred lines.

Table 6. Accuracy (R2) for both imputations separately, 
the consensus imputation, and the accuracy for Beagle 
when the inbred imputation chooses not to impute. The 
consensus imputation is always more accurate than either 
method alone, but imputes the fewest missing genotypes.

Algorithm(s) used

R 2

Diverse landraces Diverse inbreds Temperate inbreds

FILLIN† 0.583 (115,485) 0.990 (377,013) 0.986 (157,431)

Beagle 0.737 (352,033) 0.891 (397,163) 0.949 (166,097)

Both agree 0.809 (98,325) 0.995 (367,828) 0.995 (155,591)

B eagle, when inbred 
does not impute

0.606 (236,518) 0.753 (20,106) 0.810 (8,661)

† Fast Inbred Line Library Imputation.

Figure 9. Computational time for Fast Inbred Line Library Imputa-
tioN (FILLIN) and Beagle v. 4. Only one chromosome (chromo-
some 10) was compared, since computing the whole genome 
with >1000 samples using Beagle v. 4 is intractable unless paral-
lelized. Each subset is a random sample of the larger taxa set.

Figure 8. Accuracy for sites with different minor allele frequen-
cies (MAF). The MAF for Fast Inbred Line Library ImputatioN (FIL-
LIN) is taken from the donor haplotype files, while the MAF for 
Beagle v. 4 and Fast Inbred Line Library ImputatioN is taken from 
the unimputed input data.
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algorithms to impute a minor allele correctly if that vari-
ant does not exist in the haplotypes. Beagle is better able 
to phase and extract haplotypes from heterozygous taxa, 
and consequently imputes heterozygous datasets better for 
both heterozygous genotypes and genotypes homozygous 
for the minor allele. FILLIN focuses on extracting phased 
haplotypes from inbred segments, and imputes minor 
alleles better for homozygous datasets.

Overall, FILLIN provides rapid imputation of large 
sample size, low-coverage, whole-genome sequence data 
from predominantly inbred or breeding populations with 
high overall accuracy. For full-sib families where the 
objective is to find recombination breakpoints or to do 
linkage analysis, which requires IBD information, FSFHap 
provides sensitive and accurate imputation. For highly 
heterozygous samples with unknown segregating parental 
haplotypes, we recommend at this time that researchers 
use Beagle v. 4 (Browning and Browning, 2013). If highly 
accurate imputation is required, taking a consensus impu-
tation will provide the most accurate results (Table 6).

Together, these three algorithms, Beagle v. 4, FILLIN 
and FSFHap, provide robust imputation of low-coverage 
GBS data from diverse populations. High quality haplo-
types are required for accurate imputation by any of the 
algorithms presented here. Thus, if genotyping unrelated 
inbred lines or heterozygous populations in a species 
without available haplotype panels, resources should be 
expended to genotype a subset of individuals covering 
the diversity of haplotypes at higher coverage to ensure 
accurate haplotype generation and subsequent imputa-
tion. These results suggest that even one generation of 
selfing, in species where that is possible, can aid in accu-
rate imputation of low-coverage genotyped populations. 
For breeders or researchers desiring to use GBS for geno-
typing highly related breeding populations, these results 
suggest that very-low-coverage genotyping, combined 
with FILLIN or FSFHap imputation, will provide highly 
accurate results at low cost. This is true even if the par-
ents have not been sampled elsewhere, since numerous 
low-coverage replicates of each haplotype are expected 
within the population. Well-thought-out experimental 
design can help keep genotyping costs low (<$20 per 
sample), which enables efficient breeding and conserva-
tion biology decisions to be made.
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