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Abstract
Key message Two read depth methods were jointly used in next-generation sequencing data to identify deletions in 
maize population. GWAS by deletions were analyzed for gene expression pattern and classical traits, respectively.
Abstract Many studies have confirmed that structural variation (SV) is pervasive throughout the maize genome. Deletion 
is one type of SV that may impact gene expression and cause phenotypic changes in quantitative traits. In this study, two 
read count approaches were used to analyze the deletions in the whole-genome sequencing data of 270 maize inbred lines. 
A total of 19,754 deletion windows overlapped 12,751 genes, which were unevenly distributed across the genome. The 
deletions explained population structure well and correlated with genomic features. The deletion proportion of genes was 
determined to be negatively correlated with its expression. The detection of gene expression quantitative trait loci (eQTL) 
indicated that local eQTL were fewer but had larger effects than distant ones. The common associated genes were related to 
basic metabolic processes, whereas unique associated genes with eQTL played a role in the stress or stimulus responses in 
multiple tissues. Compared with the eQTL detected by SNPs derived from the same sequencing data, 89.4% of the associ-
ated genes could be detected by both markers. The effect of top eQTL detected by SNPs was usually larger than that detected 
by deletions for the same gene. A genome-wide association study (GWAS) on flowering time and plant height illustrated 
that only a few loci could be consistently captured by SNPs, suggesting that combining deletion and SNP for GWAS was an 
excellent strategy to dissect trait architecture. Our findings will provide insights into characteristic and biological function 
of genome-wide deletions in maize.

Introduction

With the improvement of sequencing technologies, many 
studies have indicated that a single reference genome is 
insufficient in terms of capturing all genomic diversity. 
The introduction of the pan-genome concept has allowed 
us to discover new gene sets and partition them as core or 
dispensable, according to whether they contribute to essen-
tial functions or adaption and diversity (Golicz et al. 2016; 
Tranchant‐Dubreuil et al. 2018). For 20 years (Kim and 

Misra 2007), most studies have focused on single nucleo-
tide polymorphisms (SNPs) as the main source of genetic 
differences because of their high throughput and easy detec-
tion. However, many large structural variations are found 
throughout the genome and are regarded as a cornerstone of 
the pan-genome (Golicz et al. 2016). Compared with SNP, 
SV is longer variation (> 50 bp) can be divided into dele-
tion, insertion, copy number variation (CNV), inversion, 
and translocation (Chiang et al. 2017; Yuan et al. 2021). As 
many plants have large and complex genomes that contain 
an abundance of repetitive sequences, the identification of 
SVs is challenging and low-sensitivity when using short-
read sequencing (Sedlazeck et al. 2018), indicating that SV 
calling needs filters for robust results. With the develop-
ment of DNA sequencing technology, long-read sequencing 
revealed extensive SV detection among diverse individuals 
within crop species, which may assist crop genomics and 
improvement (Della Coletta et al. 2021). To build “near-
complete” plant genomes (Michael and VanBuren 2020), 
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pan-genome studies in soybean and rice have constructed 
several graph-based genomes to demonstrate the hidden 
genomic variations (Liu et  al. 2020b; Qin et  al. 2021). 
These studies indicated that SVs were pervasive throughout 
the genome and play an important role in gene expression, 
environmental adaption, domestication, and trait architec-
ture. Early studies demonstrated that SVs were pervasive 
but not evenly distributed in the maize genome by multiple 
strategies such as array comparative genomic hybridization 
(aCGH) (Springer et al. 2009; Swansonwagner et al. 2010) 
and genotyping by sequencing tags (Lu et al. 2015). Cur-
rently, many assembled genomes have been released with the 
exception for B73, which provide references for SV identifi-
cation. A recent study even reported the de novo assembly of 
26 parents of NAM (nested association mapping) population 
(Hufford et al. 2021). The genome assembly of 26 NAM 
parents demonstrated that SVs were more common on chro-
mosome arms with the highest recombination rate. GWAS 
using SVs detected a significant SV associated with northern 
leaf blight on chromosome 10, which cannot be identified by 
SNPs. The assembly of a tropical small-kernel line indicated 
the 22% of SVs cannot be detected via SNP approach, and 
some of them can impact expression and trait performance 
(Yang et al. 2019). The SV analysis of Mo17 indicated that 
more than 20% predicted genes contained either large-
effect mutations or SVs (Sun et al. 2018). The alignment of 
the A188 and B73 genome sequences identified extensive 
SVs, including duplication and copy number increases, for 
carotenoid accumulation (Lin et al. 2021). Other than de 
novo assembly, SVs can be also detected by read mapping, 
including paired read (PR), read depth (RD), and split read 
(SR). As the assembly of high-quality reference genomes 
is challenging and relatively expensive, the comparison of 
the segment alignment between genomes is limited, while 
read mapping strategies are more common, but need rigor-
ous design. In humans, several studies have already applied 
multiple RD, SR, and sequencing assembly methods to iden-
tify SVs with high genetic diversity from hundreds to two 
thousand human genomes (Consortium 2012; Mills et al. 
2011; Sudmant et al. 2015). In plants, a CNV map was con-
structed using more than 1000 Arabidopsis accessions: the 
CNV was found to overlap with 18.3% of protein-coding 
genes, and these genes were enriched in evolution, stress, 
and defense. CNV markers can accurately explain popula-
tion structure and migration patterns. The dosage effect of 
genes triggered by CNV impacts transcript and protein level 
(Zmienko et al. 2020).

As a type of genomic imbalance, deletions can modu-
late phenotypes by altering the transcriptome in different 
feedback loops. A deletion can affect the expression of a 
single gene through several mechanisms: (1) gene duplica-
tion or deletion altering gene dosage in a fraction of dos-
age-sensitive genes (Gamazon and Stranger 2015); (2) the 

formation of novel transcripts through the disruption of the 
structure in genes partially overlapped with deletions; (3) 
“position effects,” by the alteration of distance from cis- or 
trans-regulators or missing regulatory elements, unmasking 
recessive functional polymorphisms (Feuk et al. 2006); (4) 
long-distance trans-regulation generated by the modification 
of the position of genes or regulatory elements within the 
nucleus and/or chromosome territory of a genomic region 
(Cremer et al. 2006; Fraser and Bickmore 2007; Reymond 
et al. 2007). The identification of expression quantitative 
trait loci (eQTL) has been identified as a good strategy to 
explore how genomic variants impact gene regulation.

According to the relative distance between the polymor-
phism and target gene, eQTL can be considered as “local 
eQTL” and “distant eQTL”: eQTL located within the gene 
sequence or near the encoded transcript are “local eQTL”; 
meanwhile, eQTL mapped elsewhere in the genome are 
determined as “distant eQTL.” Further, eQTL can be catego-
rized as either trans- or cis-depending on whether the regu-
latory mechanism is allele-independent or allele-dependent 
(Albert and Kruglyak 2015; Fan et al. 2020). cis-eQTL are 
known to mainly have a larger effect than trans-eQTL in 
global transcript profiling, as cis-eQTL directly influenced 
the cis sequence polymorphisms (Hansen et al. 2008; Liu 
et al. 2017a). In maize, using recombination inbred lines and 
GWAS panel, eQTL mapping was applied to link expression 
and phenotypic variation, including root, leaf, kernel devel-
opment, and oil-related traits (Holloway et al. 2011; Krem-
ling et al. 2019; Liu et al. 2017a; Pang et al. 2019). With the 
development of “omics,” many studies were able to integrate 
eQTL mapping with GWAS in order to identify candidate 
genes in multiple dimensions. For example, by integrating 
GWAS, eQTL, and quantitative trait transcript analysis, 137 
putative kernel length-related genes were identified in total, 
including 43 previously reported QTL regions (Pang et al. 
2019). In another study combining GWAS, eQTL mapping, 
and trait correlation to dissect leaf development in maize, 
25 prioritized candidate genes were identified and were 
enriched in specific functional categories (Miculan et al. 
2021). However, unlike SNPs that are often bi-allelic, SVs 
are deemed multi-allelic both in length and copy number 
(Handsaker et al. 2015). A few studies have employed eQTL 
mapping using SVs in maize, even for the SVs identified 
by short-read sequencing, which is extremely challenging 
because of the complexity of the genome (Schnable et al. 
2009).

As the SV-gene pairs exhibit subtle and significant gene 
regulation, the regulation of these genes can form a net-
work that influences the complex quantitative trait variation 
(Alonge et al. 2020). In humans, the role of SVs has been 
linked to many severe diseases (Gonzalez et al. 2005; Hel-
big et al. 2009; Nuytemans et al. 2009; Prasad et al. 2012; 
Yang et  al. 2013a). In plants, numerous examples have 
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demonstrated that SV has a potential role in biotic (Cook 
et al. 2012; Dolatabadian et al. 2017; Liu et al. 2017b; 
Zuo et al. 2014) and abiotic resistance (Gabur et al. 2019; 
Maron et al. 2013), domestication (Lye and Purugganan 
2019; Studer et al. 2011), kernel development (Liu et al. 
2019, 2015), and heterosis (Lai et al. 2010; Springer et al. 
2009). Moreover, SVs are shown to function in environmen-
tal adaption, including stay-green traits (Qian et al. 2016) 
and flowering time (Díaz et al. 2012; Huang et al. 2018). 
A PanSV genome of 100 tomato lines revealed that SVs 
changed gene dosage and expression levels that resulted in 
differences of fruit flavor, size, and production (Alonge et al. 
2020). As SVs can potentially explain “missing” heritability, 
they are considered as an important complement to GWAS 
(Manolio et al. 2009) and genomic prediction models. Cur-
rently, the third version of the maize haplotype map has 
developed, extending the number of inbred lines from 27 
(Gore et al. 2009) to 1218 (Bukowski et al. 2017), and pro-
viding an abundance of short-read sequencing data for the 
analysis of genetic diversity. However, although many stud-
ies have already investigated the gene expression and phe-
notypic effect of SVs from comparative genomics between 
the assembled genomes in maize, it is still valuable to per-
form eQTL mapping and GWAS for expression analysis to 
understand the underlying functional effect using short-read 
sequencing data from large-scale population.

In this study, we applied two methods, based on the 
depth of sequencing reads, in order to detect deletions in 
the resequencing data generated from 270 diverse maize 
inbred lines (Bukowski et al. 2017; Flint-Garcia et al. 2005) 
(Table S1). Moreover, eQTL of gene expression in different 
tissues (Kremling et al. 2018) and the loci associated with 
the flowering time and plant height were also analyzed using 
GWAS. The detection efficiency of GWAS for expression 
and phenotypes was also compared between deletions and 
SNPs. Our study will thus provide information on develop-
ing high-efficiency methods for application in plants with 
complex genomes and to uncover the distribution and func-
tional impact of deletion in the maize genome.

Materials and methods

Materials, tissues, and sequencing

Paired-end sequencing data were produced for a total of 
270 maize inbred lines that could be divided into non-stiff 
stalk (NSS), stiff stalk (SS), tropical and subtropical (TS), 
popcorn, and sweetcorn lines (Bukowski et al. 2017; Flint-
Garcia et al. 2005). The sequencing depth ranged from 0.004 
to 40.904 ×  and from 0.001 to 20.025 × under q > 30 filter-
ing via mapping quality. The duplicates were marked using 
MarkDuplicates from Picard (version 2.5.0) (Institute 2019). 

The raw sequencing reads were aligned to B73_RefV3 ref-
erence in BWA (version 0.7.13) (Li and Durbin 2009) and 
then transformed and merged to BAM files for each taxon 
in SAMtools (version 1.3.1) (Li et al. 2009). The details of 
sample collection and sequencing for the RNA-seq data were 
introduced in Kremling et al. (Kremling et al. 2018).

Estimation of a suitable window size 
for the read‑depth approach

The “suitable window size” in this study means the mini-
mum size of the window that ensures there are enough reads. 
To ensure statistical power, we set a threshold of at least 30 
reads for sufficient power for analysis. Based on the thresh-
old for the read count, we have calculated a suitable window 
size for each taxon using the formula below:

where “suitable window size” means the suitable window 
size estimated for each taxon; “expected read depth” is the 
minimum accepted threshold in the number of reads (30); 
“read length” represents the read length; and “sequencing 
depth” means the sequencing depth for each taxon. As the 
sequencing depth of each taxon is different and a consistent 
standard is needed to calculate the read count in all inbred 
lines, the largest suitable window size in 262 lines (2900 bp) 
was set as a consistent standard in this panel. The window 
size was set to 3000 bp for convenience.

PAV calls based on multiple reference genomes

PAV locations and sequences were identified using a sliding 
window method against three released reference genomes, 
that is, Mo17, W22, and CML247. This method was slightly 
modified based on the identification of Mo17 PAVs by Sun 
et al. (Sun et al. 2018). We then divided the B73 genome into 
150-bp overlapping windows with a 1-bp step size. The slid-
ing window size was set to 150 bp because it is the expected 
read length, and the step size was set to 1 bp for higher reso-
lution. We then aligned those sequences to the B73 genome 
and the other three genomes using BWA (version 0.7.13) 
with the options of “-w < bandwidth >  < aligned genome 
fasta >  < divided genome fasta > -M.” When the gap pro-
portion cutoff and the coverage cutoff were set to 0.25, the 
sequences of windows that could be aligned to the B73 refer-
ence genome but could not be aligned to the other genomes 
were considered B73-specific sequences and a PAV inter-
val of the corresponding genome. The overlapping windows 
were then merged into suitable windows estimated above, 
and the PAV proportion for each window was calculated.

Suitable window size =
Expected read depth × Read length

Sequencing depth
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Deletion detection via HMMCopy and dynamic 
window methods

For the HMMCopy method, the whole genome was split 
using the suitable window size described above. Read count, 
GC content, and mappability in these windows were esti-
mated using HMMcopy_utils (Ha et al. 2012). A 150 mer 
was set to calculate the mappability file for each base pair, 
and the parameter E was set to 0.9 to assure the precision of 
copy numbers for smaller windows. After removing “NA” 
in the copy number estimated by HMMCopy, the deletion 
windows with negative copy numbers were retained and 
combined with the PAV windows in which the proportion 
of PAVs identified by three reference genomes above was 
greater than 0.9. The copy number threshold for this popu-
lation was determined by the boundary of the distribution 
located in the negative axis.

According to the mappability file described above, the 
suitable window size for the dynamic window method was 
set as the standard for the unique mapped base pairs in each 
dynamic window. The read numbers for these windows were 
then counted via BEDTools (version 2.26.0) (Quinlan and 
Hall 2010), whereas the GC percentage was calculated using 
a customized script. According to McConnell et al. (McCo-
nnell et al. 2013) and Knouse et al. (Knouse et al. 2016), the 
read counts were normalized by the genome-wide median 
read count with a similar GC percentage (1% interval) to 
eliminate the GC content bias. Following the same protocol 
as the HMMCopy method, dynamic deletion windows with 
negative copy numbers were kept and combined with the 
PAV proportion estimated by the three genomes. Then, the 
copy number cutoff of this population for this method was 
determined by the normal distribution boundary located only 
on the negative axis.

To eliminate the false-positive deletions called for each 
method, for each inbred line, deletions from both methods 
with the same type and a reciprocal overlap larger than 50% 
of their size were identified as the same deletion and used 
for further analysis.

Transferring deletion windows to a bi‑allelic 
genotype for analysis of population structure 
and linkage disequilibrium (LD) decay distance

The whole genome was split into the suitable window size 
described above. For each taxon, we used the allele “A” if 
the window was identified as a deletion window or “T” if the 
window could not be identified. After filtering the markers 
with minor allele frequency (MAF) > 0.05, 50,000 markers 
were randomly selected across the genome and imported to 
Tassel 5 (5.2.57) (Bradbury et al. 2007) for principal com-
ponent analysis (PCA) analysis.

LD decay was also analyzed via Tassel 5 by setting the 
window size to 100. The LD decay distance was defined 
by a cutoff of r2 = 0.1. We then divided the population into 
NSS, SS, TS, and mixed subgroups, and the same steps were 
repeated for each group.

Deletion proportion and genomic features

Based on the “Zea_mays.AGPv3.26.gff3” file, we extracted 
repeats and gene density into 1-Mb window size across the 
whole genome. The recombination, genomic evolutionary 
rate profiling (GERP) score, and sorting intolerant from 
tolerant (SIFT) were collected from the NAM population 
(Rodgersmelnick et al. 2015). Pearson’s correlation analysis 
was performed pairwise by setting the P value cutoff to 0.01.

Deletion proportion and gene expression

For each tissue and stage, the genes with no expression in 
this population were removed. The raw gene expression 
abundance was Box-Cox-transformed, and the Z-score was 
then calculated. The gene expression rank was estimated 
in accordance with the Z-score of each taxon. For each 
expressed gene in this population for each tissue, the Z-score 
data were separated into two groups based on whether the 
deletions overlapped or not. The Wilcoxon test was used for 
comparison between these two groups. Moreover, simple 
linear regression was applied between the mean deletion 
proportion and the corresponding rank.

eQTL mapping by deletions and SNPs

To eliminate the effects of hidden determinants on gene 
expression, 25 hidden factors were estimated using PEER 
(Stegle et al. 2010) for each tissue. Combined with five 
multidimensional scaling (MDS) covariates, 30 covariates 
were imported into the Tassel 5 “EqtlAssociationPlugin” for 
eQTL mapping of Box-Cox-transformed expression values 
for each gene. The significance level was set to 0.05 and 
corrected by Bonferroni test. To filter the repetitively false 
positives caused by LD, we grouped significant sites that 
were separated by < 150,000 bp. The lead eQTL was defined 
as the eQTL with the most significant site and the largest 
R2 in each group. The LD analysis of each pair of sites was 
performed for the lead eQTL of each gene, and the R2 cutoff 
for LD was set to 0.1. If two lead eQTL were in LD, only 
the site with more significant and larger effect was kept. 
An eQTL was considered “local” if the eQTL was found 
within 50 kb of the target gene. The remaining eQTL were 
considered “distant.” The eQTL mapping process for SNPs 
was similar except that the cutoff for the interval size was 
reduced to 5000 bp.
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Distant eQTL hotspots were defined as the genomic 
regions that were enriched in eQTL influencing the expres-
sion of genes. For their discovery, we applied a permutation 
approach. First, we performed a sliding window analysis 
with 0.9 Mb windows and 3000 bp steps. In each permuta-
tion, distant eQTL of tissues and total distant eQTL were 
randomly assigned to windows in the whole genome. eQTL 
were counted using the sliding window. For each sliding 
window, the 95th percentile of the eQTL number of all per-
mutations was recorded as the eQTL cutoff. To reduce false 
positives, only the maximum of cutoffs in all sliding win-
dows was set as a threshold to extract distant eQTL hotspots. 
The overlapped sliding windows were then merged, and the 
target genes regulated by distant eQTL in each hotspot were 
extracted. Transcription factors information was extracted 
from PlantTFDB database (Jin et al. 2016) (http:// plant tfdb. 
cbi. pku. edu. cn/).

Gene ontology (GO) enrichment and KEGG analysis

Gene names were extracted using the AgriGO tool (Tian 
et al. 2017) (http:// syste msbio logy. cau. edu. cn/ agriG Ov2/ 
index. php). The option “Fisher Test” was selected as the 
test method, and the significance level was set to 0.05 in 
‘Yekutieli (FDR under dependency)’ in multi-test adjust-
ment, and “Plant GO slim” was chosen as gene ontology 
type. We also extracted gene names and transformed them 
into “Entrez Gene” ID using the MaizeGDB gene center 
(https:// www. maize gdb. org/ gene_ center/ gene). The “Entrez 
Gene” IDs were imported in KOBAS 3.0 (Xie et al. 2011) 
(http:// kobas. cbi. pku. edu. cn/), and default parameters were 
selected for KEGG analysis. The KEGG pathways in which 
the P value was less than 0.05 were considered as signifi-
cantly enriched pathways.

GWAS of common traits using deletion alleles

Best linear unbiased predictions for 11 traits of 254 over-
lapped inbred lines were collected from Peiffer et al. (2014). 
The data included days to anthesis (DTA), days to silking 
(DTS), anthesis-silking interval (ASI), growing degree 
days to anthesis (GDD-DTA), growing degree days to silk-
ing (GDD-DTS), growing degree days to anthesis-silking 
interval (GDD-ASI), plant height (PH), ear height (EH), PH 
minus EH (PH-EH), EH divided by PH (EHdivPH), and PH 
divided by days to anthesis (PHdivDTR). In total, 239,484 
deletion alleles with MAF > 0.05 were used as alleles for 
GWAS. The GWAS analysis was performed by FarmCPU 
with the first three PCs as covariates. The significance level 
was set to 0.01 and adjusted by Bonferroni test.

Results

Identification of deletion windows in the population 
using multiple reference genomes

Two different methods were applied to identify deletions 
based on read counts. The analysis flows are shown in 
Fig. 1a. First, we estimated PAVs from multiple genomes 
to evaluate the copy number threshold of the population. 
The B73 sequence was partitioned into 150-bp segments 
with one base pair step size and aligned to the currently 
assembled genomes of Mo17, CML247, and W22 (https:// 
www. maize gdb. org/ genome). The segments that were 
present in B73 but absent in others were extracted and 
combined into long fragments as PAV. As per our results, 
it showed that the total size of PAV in CML247 was the 
largest (37.02 Mb), whereas Mo17 contained the smallest 
length (34.58 Mb), a difference of approximately 2 Mb 
(Fig. 1b, Table S2). In contrast, PAVs that were present 
in CML247, Mo17, and W22 but absent in B73 reference 
genome were compared (Fig. 1c, Table S3). The results 
showed that the PAV length in CML247 (37.02 Mb) was 
the largest, whereas that in W22 (29.17 Mb) was the small-
est, a difference of approximately 8 Mb. The PAV seg-
ments from two datasets were concentrated to less than 
1000 bp.

After filtering the mapping quality to values larger 
than 30, the window size was set to 3000 bp for statisti-
cal power. Eight lines were then removed for the follow-
ing analysis because of insufficient depth based on the 
suitable window size formula (refer to Methods) (Fig. 1d, 
Table S1). After correction for GC and mappability, the 
copy number of the corrected read counts for each win-
dow was calculated using the R packages HMMCopy (Ha 
et al. 2012) and dynamic window method, respectively. As 
expect, RD was closely correlated with the average read 
count of windows (Figs. S1a, b), but showed little corre-
lation with the average copy number per window in both 
methods (Figs. S1c, d). For each method, only windows 
with a PAV proportion of more than 90% were collected 
to estimate the copy number threshold. The distribution 
of copy number was bimodal, which indicated that the 
copy numbers of many PAV windows were larger than 
zero. Because deletion can result in read count loss, the 
right boundary of the negative copy number distribution 
was set as the copy number threshold. To ensure reliabil-
ity and avoid false positives, we set − 1.70 and − 1.85 as 
the thresholds of deletion for HMMCopy and dynamic 
window method, respectively, in this study (Figs. 1e, f). 
Finally, each deletion window was further verified by at 
least 50% reciprocal overlap between the two methods. To 
verify the accuracy of deletions identified in this study, the 

http://planttfdb.cbi.pku.edu.cn/
http://planttfdb.cbi.pku.edu.cn/
http://systemsbiology.cau.edu.cn/agriGOv2/index.php
http://systemsbiology.cau.edu.cn/agriGOv2/index.php
https://www.maizegdb.org/gene_center/gene
http://kobas.cbi.pku.edu.cn/
https://www.maizegdb.org/genome
https://www.maizegdb.org/genome
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Benchmarking Universal Single-Copy Orthologs (BUS-
COs) were introduced as single-copy benchmarks. When 
comparing the deletion frequency between BUSCO over-
lapping windows and non-overlapping windows, the dele-
tion frequency of non-overlapping windows was signifi-
cantly larger than the overlapping windows (0.11 vs 0.22, 
Wilcoxon test P < 0.01). The distribution of frequency also 
indicated BUSCO overlapping windows enriched in the 
lower frequency interval compared with non-overlapping 
windows (Fig. S2).

Deletions showed uneven distribution 
across the genome and the population

The deletion windows were compared in the genome 
and the population. In total, 318,269 deletion windows 
were identified, accounting for 46.35% of the total win-
dows across the genome. The deletions were distributed 
throughout the maize genome, but rarely located in cen-
tromere regions, except for chromosomes 2 and 9 (Fig. 2a, 

4). Among them, 45 deletion windows showed a high 
frequency (> 95%), which were considered as deletion 
hotspot windows, suggesting that many common dele-
tions were found in different inbred lines (Table S4). In 
total, 19,754 deletion windows were found to have over-
lapped with 12,751 genes, and most deletion windows 
were enriched in the coding for amino acids sequences 
(CDS) and introns (Fig. 2b). After merging the continu-
ous deletion windows, numerous large deletion regions 
were identified across the genome. The largest deletion 
region, which contained 46 continuous deletion windows, 
was located on chromosome 1 (Table S5). The existence 
of the deletion hotspot windows and large deletion regions 
illustrated that deletions were not evenly distributed in 
the maize genome. The mean frequency of all deletion 
windows for each inbred line was close to 0.10 in this 
population (Fig. S3). Unsurprisingly, B73 contained the 
fewest deletion windows, whereas B57 contained the 
largest number of deletion windows in the population. 
To dissect deletion distribution among different heterotic 

Fig. 1  The route map of deletion detection and the estimation of dele-
tion window size. a. Route map of deletion discovery using next-gen-
eration sequencing data of the maize population. b. Length distribu-
tion of PAVs exists in B73 but not in CML247, Mo17, and W22. c. 
Length distribution of PAVs exists in CML247, Mo17, and W22 but 
was not in B73. d. Correlation between sequencing depth and esti-
mated window size. The blue line was the window size (3000  bp) 

used in this study. e. The distribution of normalized read depth calcu-
lated by the HMMCopy package. The blue line was the threshold of 
normalized read depth for the HMMCopy method. f. The distribution 
of normalized read depth calculated by the dynamic window method. 
The blue guideline was the threshold of normalized read depth for the 
dynamic window method
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groups, the inbred lines were clustered into six groups as 
described in a previous study (Flint-Garcia et al. 2005). 
The deletion frequency was significantly different among 
groups (P < 2e-16, one-way ANOVA) (Table S6). The 
average deletion frequency represents the average dele-
tion frequency of inbred lines belong to the corresponding 
subgroup. The average deletion frequency in the stiff-stalk 
(SS) group, where B73 belongs, was the lowest, whereas 
that in the popcorn group was noted to be the highest 
(Fig. 2c, Table S7). This was mainly due to the bias of the 
reference genome and identity by descent similarity within 
SS relative to the NSS group.

Across the inbred lines, the site frequency spectrum 
was compared between deletions and SNPs called from 
the same raw data (Fig. S4a). Relative to B73, the highest 
frequency of SNP and deletion allele was 0–0.20, but the 
proportion of SNPs was much higher than that of deletions 
in low-level allele frequency. To better understand the 
relationship between SNP and deletion allele frequency, 
the average allele frequency of each polymorphism in the 
deletion window was calculated (Fig. S4b). However, the 
correlation was not strong (P < 2.2e-16, r =  − 0.044, Pear-
son’s correlation) between deletion allele frequency and 
SNP frequency across the whole genome.

Deletions can explain population structure 
and were significantly correlated with genomic 
features

Population structure is often affected by selection, which can 
guide breeding progress. In GWAS, the population struc-
ture is also imported as a covariance. To explore whether 
deletions could explain the population structure, the dele-
tion windows were transformed into two-allele genotypes 
(see Methods). After filtering alleles with a MAF of < 0.05, 
50,000 deletion windows were randomly selected for PCA. 
Six window numbers from 5000 to 100,000 were simulated 
to investigate the effect of window number for PCA (Fig. 
S5); the results showed little differences among the variant 
window numbers. SS, NSS, and TS groups showed clear 
divisions in the population. The inbred lines with mixed 
genetic backgrounds were mainly located between NSS and 
TS. Popcorn and sweetcorn were not grouped independently, 
but were within the NSS group, which was consistent with 
a previous study (Flint-Garcia et al. 2005). In contrast, SS 
group was dispersed, and some inbred lines were close to the 
NSS group (Fig. 3a). PCA analysis was also performed with 
50,000 randomly selected SNPs extracted from the same 
sequencing data (Fig. 3b). After a simulation of different 
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Fig. 2  Deletion distribution for the whole genome, gene regions, and 
different subgroups. a. Deletion distribution throughout the whole 
genome, black circles are centromeres. b. Number and total length 

of overlapped deletion windows in gene regions. c. Box plot of dele-
tion frequency for each subgroup. Subgroups were clustered by SSRs 
according to the previous study (Flint-Garcia et al. 2005)
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randomly selected SNPs for PCA analysis, the results were 
similar to deletion that showed little difference in PCA clus-
ter (Fig. S6). In conclusion, PCA plots of deletion and SNP 
showed the same group clusters, and even similar discrete 
ranges of each subgroup, although the PCA plot of SNPs 
were slightly concentrated.

LD is an essential factor affecting the accuracy and confi-
dence intervals of association analysis. At a cutoff of r2 = 0.1 
for each chromosome, the average distance was 102 kb. The 
distance was greatest between chromosomes 4 and 5, that is, 
at 126 kb (Fig. S7a). Compared with the LD decay distance 
estimated by SNPs, which was usually less than 10 kb (Lu 
et al. 2011; Yan et al. 2009), the distance calculated using 
deletions was larger, probably because of the lower density 
of deletion markers across the genome. A previous study 
concluded that the LD decay distance is closely related to the 
genetic background of the population (Zhang et al. 2016). 
Therefore, we separated individuals into SS, NSS, and TS 
groups to evaluate the LD decay in different germplasm 
groups. Similar to deletion frequency, the SS group exhib-
ited the furthest distance (294 kb) (Figs. S7b, c). In contrast, 
the TS group had the shortest distance (84 kb) (Fig. S7d), 
which was consistent with the results estimated using SNPs 
in previous studies (Lu et al. 2011; Yan et al. 2009; Zhang 
et al. 2016). We further analyzed whether SNPs within the 
deletion windows showed LDs with located deletion. After 
filtering SNPs for MAF > 0.05, heterozygosity < 0.2, and 
missing rate < 0.2, only 37,098 deletion windows account-
ing for only 32.8%, showed LD with inside SNPs among 
113,040 deletion windows contained SNPs by setting the 
LD cutoff to r2 = 0.1. This result indicated that the SNPs 

within deletion windows cannot replace deletion alleles for 
association analysis (Fig. 5a).

To understand whether deletions were affected by 
genomic features, the average deletion proportion in 1-Mb 
windows was calculated. The distribution trends of six ele-
ments, including deletion frequency, recombination, repeat, 
gene density, GERP score (Rodgersmelnick et al. 2015), and 
centromere position, were integrated for Pearson’s correla-
tion analysis (Fig. S8). The results indicated that deletion 
frequency was significantly (P < 0.05) correlated with most 
features, including repeats, gene density, centromere posi-
tion, and sites of GERP > 0. However, no strong correlation 
was detected between deletion frequency and other features, 
showing a low correlation coefficient (Fig. S8). The distri-
bution of each feature also showed a similar trend, with 
deletions often present in the regions at both ends of the 
chromosomes and became gradually sparser closer to the 
centromere (Fig. 4), which might be due to the poor assem-
bly and low recombination rates around the centromeres.

The proportion of deletion in a gene impacts its 
expression

A previous study confirmed that deletions may affect gene 
expression by dosage and transcript regulation (Gamazon 
and Stranger 2015). To investigate the overall relationship 
between deletion and gene expression, we compared the 
gene expression of the deletion overlap in seven different 
tissues (GRoot, GShoot, Kern, L3Base, L3Tip, LMAD, and 
LMAN) (Kremling et al. 2018). Normalized expression 
levels were used to rank the genes, and the mean deletion 

Fig. 3  Distribution of inbred lines between SNPs and deletions in PCA analysis. a. Distribution of inbred lines in PCA analysis of deletions. b. 
Distribution of inbred lines in PCA analysis of SNPs
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proportion for each rank was calculated. The deletion pro-
portion was slightly positive correlated with rank in all tis-
sues and stages, indicating that a high proportion of deletion 
resulted in lower expression values (Figs. S9a–g).

For each gene, inbred lines were divided into two groups 
according to the presence of absence of deletion overlap or 
not, and the expression abundance was then compared via 
Wilcoxon test. After Bonferroni correction (P < 0.01), only 
697 genes showed a significant difference between the two 
groups, 181 of which were all-expressed genes, accounting 
for less than 4% genes of the total gene set in maize (Table 1, 
Table S8). In multiple tissues, only a small proportion of 
genes are consistently influenced by deletions, especially in 
deletion overlapping genes expressed in all inbred lines. This 
implies that deletions could influence gene expression through 
a complex regulatory mechanism during different development 
processes.

eQTL count

Deletion proportion

Sites with GERP > 2

Sites with GERP > 0

Centromere distance

Recombination

Gene frequency

Repeat frequency

Chromosome length

Fig. 4  Circular plot shows the distribution of deletion frequency and 
other genomic features. The genomic features from outer to inner 
layer are chromosome length scale plate of the genome, repeat fre-
quency in 1-Mb windows, gene frequency in 1-Mb windows, aver-
age recombination in 1-Mb windows, relative centromere distance in 
1-Mb windows, site frequency with GERP > 0 in 1-Mb windows, site 
frequency with GERP > 2 in 1-Mb windows, average deletion propor-

tion in 1-Mb windows (dark red bars mean the windows with dele-
tion proportion larger than 95% of windows), eQTL count in 1-Mb 
windows (dark blue bars mean windows with eQTL count larger than 
95% of windows), the black dots represent centromere position in 
each chromosome, the inside lines link the eQTL position and associ-
ated genes (only eQTL and associated genes located in different chro-
mosomes are displayed)

Table 1  Number of genes affected by deletion overlapping in expres-
sion

a Deletion overlapping can impact gene expression in only one tissue;
b Deletion overlapping can impact gene expression in all tissues

Tissue and stage Detected overlapped 
genes

All-
expressed 
genes

GRoot 315 81
GShoot 426 97
Kern 383 92
L3Base 380 87
L3Tip 331 92
LMAD 298 66
LMAN 397 92
Unique  tissuea 201 76
All  tissuesb 149 6
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GWAS to detect large‑scale eQTL caused 
by deletions

Although deletion can influence gene expression, it is 
more important to understand which deletion windows 
can regulate the expression of specific genes. For eQTL 
mapping, the expression values of each gene were Box-
Cox-transformed to fit the normal distribution. However, 
in Box-Cox transformation, the zero values were adjusted 
via the addition of a small random value beneath the mini-
mum detection threshold. Thus, only the genes expressed 
in all individuals of the population for eQTL mapping. 
Here, we used GWAS for large-scale eQTL detection in 
seven tissues using deletion alleles. To avoid false posi-
tives, the two-step method, according to Fu et al. (Fu et al. 
2013), was applied. For each gene, raw GWAS results 
were filtered using Bonferroni-corrected P thresholds 
(P < 0.05). Then, when accounting for deletion intervals 
and LD, the deletion windows with lower association or in 
LD were removed. In total, 36,237 eQTL were identified 
for 25,669 genes in 7 different tissues. The list included 
10,641 unique genes (Table S9), which meant that there 
were 3.41 eQTL for each gene. Among the genes with 
eQTL, 71.5% of genes had only one eQTL, 20.1% of genes 

had two eQTL, and 8.4% of genes had three or more eQTL. 
When considering the eQTL frequency of each deletion 
window, 24 deletion windows were enriched with more 
than ten eQTL across all chromosomes (Fig. 4, Table S10). 
The transformed positions between the gene and eQTL 
were plotted to show the exhibition of relative distance. 
A strong enrichment was observed along the diagonal, 
implying that majority of eQTL were located around the 
genes (Fig. 5c, Fig. S10). However, only a small number of 
eQTL were detected in the gene region (0.3%), and more 
eQTL were located in the different chromosomes relative 
to its regulated genes. These results indicated that dele-
tions in promoter or distal regulation played a more impor-
tant role in gene expression regulation than that in the gene 
region (Fig. 5b, Table S9). The eQTL distribution peaked 
at 5–20 kb, descending smoothly until 100 kb away from 
the target genes (Fig. 5d). We divided eQTL by the cutoff 
of 50 kb from the regulatory genes into “local” and “dis-
tant” eQTL, and found that distant eQTL were much more 
frequent than local eQTL, although local eQTL showed 
significantly larger effects (R2, Wilcoxon test, P < 0.01) 
(Fig. 5e). This implied that although more trans-eQTL 
may broadly play a critical role in gene expression, cis-
eQTL have more significant effects on a single gene.

Fig. 5  Summary of eQTL detection in different tissues. a. The ratio 
of deletion windows without SNPs, deletion windows showed LD 
with SNPs inside the windows, and deletion windows did not show 
LD with SNPs inside the windows. b. The ratio of eQTL located in 
upstream of the associated gene, eQTL located in downstream of the 
associated gene, eQTL located within the associated gene region, and 
eQTL located in the different chromosomes relative to the associated 
gene. c. Genome-wide relative position between deletion window 

and the associated gene. d. Distribution of distances between eQTL 
and the associated genes in seven tissues. Only eQTL and the associ-
ated genes located in the same chromosome were included. e. eQTL 
effects (R2) between distant eQTL and local eQTL in different tissues 
using deletions. ** means very significant difference at P < 0.01. f. 
KEGG pathway analysis of the genes located in the distant eQTL hot-
spots. g. GO analysis of the commonly associated genes in all tissues
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As distant eQTL may be contained core pathways regulat-
ing a series of genes, we further studied the hotspots of dis-
tant eQTL in the whole genome. The “total” was calculated 
by merging the distant eQTL of all tissues, and applying a 
sliding window permutation to estimate the cutoff of the 
hotspots. Interestingly, hotspots were enriched on chromo-
somes 1, 3, 4, and 5, and some were consistently detected in 
different tissues (Fig. S11). Overall, 124 hotspots and 1,619 
regulated genes were identified. The target genes regulated 
by hotspots were enriched in a specific metabolic pathway, 
including the biosynthesis of secondary metabolites and 
ribosomes (corrected P < 0.05), as shown by KEGG results 
(Fig. 5f, Table S11).

To determine whether eQTL can be affected by multiple 
tissues, the eQTL frequency was calculated by multiple tis-
sues, and 301 genes were associated with eQTL in all seven 
tissues (Table S12). The GO analysis illustrated that these 
genes were enriched in some essential functions, such as 
translation, cellular protein metabolic processes, and pro-
tein metabolic processes (Fig. 5g). In contrast, total genes 
and tissue-specific genes were usually enriched on stimu-
lus responses, such as response to stimulus and response to 
stress (Fig. S12). In addition, the GO analysis of genes spe-
cific to maize kernel revealed enrichment of macromolecule 
metabolic processes and protein metabolic processes, most 

likely associated with kernel maturity (Fig. S13). Three pairs 
of relevant tissues in the same stages (GRoot and GShoot, 
L3Base and L3Tip, LMAD and LMAN) were integrated to 
analyze eQTL distributions (Fig. S14). The results showed 
under 50% of the total genes was associated with deletions, 
and among these, less than half of genes were further regu-
lated by the same eQTL between each pair of tissues.

eQTL identified by deletions cannot be fully 
captured by SNPs

To compare the effect of eQTL detected by deletions (dele-
tion-eQTL) and SNPs (SNP-eQTL), we also detected eQTL 
from genome-wide SNPs extracted from the same raw data. 
The results were analyzed using a similar pipeline as dele-
tions, but the window interval was reduced to 5,000 bp. 
Because there were more SNPs than deletion alleles, a total 
of 421,680 eQTL were identified for 42,328 gene/tissue 
combinations, including 13,180 unique genes (32.00 eQTL 
for each gene) (Table S13, Fig. S15). By setting a rela-
tive distance of 50 kb from the target gene, all eQTL were 
grouped into “local” or “distant” eQTL. Similar to deletions, 
there were more distant eQTL than local eQTL, but local 
eQTL tended to have larger effects (Wilcoxon test, P < 0.01) 
(Fig. S16).

Fig. 6  eQTL detection between deletions and SNPs in seven tissues. 
a. Genes with eQTL consistently detected by deletions and SNPs in 
different tissues. b. Genes with distant eQTL consistently detected 
using deletions and SNPs in different tissues. c. Genes with local 
eQTL consistently detected using deletions and SNPs in different tis-
sues. d. QQ plot of effect (R2) between the top significant SNP and 

the top significant deletion of total eQTL for the same associated 
gene. e. QQ plot of effect (R2) between the top significant SNP and 
the top significant deletion of distant eQTL for the same gene. f. QQ 
plot of effect (R2) between the top significant SNP and the top signifi-
cant deletion of local eQTL for the same gene
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To explore the eQTL detection efficiency by SNPs, the 
eQTL detected by deletions and SNPs were combined for 
further analysis. The results showed that eQTL were also 
detected by SNPs in 22,959 out of 25,669 genes, accounting 
for 89.4% of the total genes (Fig. 6a). To better understand 
the relationship between eQTL identified in deletions and 
SNPs, the distance between the SNP-eQTL and deletion-
eQTL was estimated for the same gene. With a threshold of 
50 kb, 79.00% of the local deletion-eQTL could be consist-
ently detected, whereas only 9.11% of distant deletion-eQTL 
could be captured by SNP-eQTL (Fig. 6b, c). A total of 67 
deletion-eQTL associated with 60 unique genes were well 
identified by SNPs, with the SNP-eQTL was located within 
the deletion windows (Table S14).

Next, we compared the effect (R2) between deletion-
eQTL and SNP-eQTL. Owing to the existence of multiple 
deletion-eQTL and SNP-eQTL for a single gene, only the 
top deletion-eQTL and top SNP-eQTL with the largest R2 
were compared. The results showed that SNP-eQTL always 
showed a significantly (Student’s t-test, P < 0.01) larger 
effect compared to deletion-eQTL (Fig. S17). QQ plots of 
paired comparisons between the top deletion-eQTL and 
top SNP-eQTL illustrated that only a few top deletion-eQTL 
have larger effects than the top SNP-eQTL. Among them, 
more distant top deletion-eQTL exhibited larger effects than 
top SNP-eQTL compared with local deletion-eQTL (Fig. 6d, 
e, f).

GWAS of deletion alleles in common traits

As this population has been widely used for GWAS, there 
is sufficient phenotypic data for analysis. In our study, two 
classical traits, that is, flowering time and PH, were used for 
GWAS. After Bonferroni correction for a P < 0.01, 44 loci 
were significantly associated with six different traits (Fig. 
S18, Fig. S19). Among them, the seven deletion alleles 
were associated with multiple traits of flowering time 
(Table S15). The association of the deletion window Chr. 
8: 130,311,001–130,314,000 with four traits (GDD_DTA, 
GDD_DTS, DTA, and DTS) close to Vgt1, was validated in 

several previous studies (Li et al. 2016; Salvi et al. 2007). 
In addition, compared with the eQTL detection results, 
many significant deletion windows were also associated 
with genes in expression. The deletion window of Chr. 8: 
144,354,001–144,357,000 was associated with the expres-
sion of GRMZM2G159053 in four different tissues, indicat-
ing that these genes may be located in the same regulatory 
pathway and jointly regulate flowering time together.

Similarly, we performed GWAS on the same phenotypic 
data using SNPs derived from the same sequencing dataset 
(Fig. S20, Fig. S21). After a Bonferroni-corrected P < 0.01, 
a total of 73 SNPs across all chromosomes were significantly 
associated with nine traits (Table S16), including 6 SNPs 
associated with all traits related to flowering time (ASI, 
DTA, and DTS). Compared with Li et al. (Li et al. 2016), 
four genes, that is, GRMZM2G101852, GRMZM2G137387 
(mads20), GRMZM2G169927, and GRMZM2G127121 
(zcn16), consistently located within 1 Mb of 220 flowering 
time candidate genes. Compared with the results of dele-
tions, only a few markers were consistently detected in flow-
ering time and PH traits (Table 2, Fig. S22), which indicated 
that combining deletions and SNPs from the same dataset for 
GWAS was an excellent strategy to dissect trait architecture.

Discussion

The joint application of multiple read-depth methods is 
a good strategy for calling deletions based on a reference 
genome with resequencing data in a large population owing 
to its high calculation efficiency and lack of interruption 
by complex genomic variation. In this study, to reduce the 
false-positive rate of deletion detection, we adopted a strict 
standard; that is, deletions called by both methods were to 
be reciprocally overlapped by more than 50%. In addition, 
we also corrected the read count bias for GC content and 
the mappability of the whole genome. PAVs identified from 
three currently released reference genomes were used as a 
control to determine the deletion threshold. Although this 
method could not confirm the exact position of deletions, it 

Table 2  Associated loci consistently detected by deletion and SNP alleles

Deletion interval Associated trait P value Effect SNP position Associated trait P value Effect

3: 243,810,001–243,813,000 DTA 1.64E-7 1.17 1: 243,758,149 EHdivPH 4.70E-18 0.029
3: 243,810,001–243,813,000 DTS 2.45E-9 1.38 1: 243,758,149 EHdivPH 4.70E-18 0.029
3: 18,849,001–18,852,000 GDD_DTA 2.85E-10 37.02 3: 18,948,262 EHdivPH 3.80E-19 0.030
8: 35,223,001–35,226,000 DTS 1.67E-7 1.47 8: 34,540,548 DTA 1.60E-14 21.66
8: 35,223,001–35,226,000 DTS 1.67E-7 1.47 8: 34,540,548 DTS 5.49E-13 19.38
10: 88,347,001–88,350,000 GDD_DTS 9.43E-9 −24.04 10: 90,166,649 GDD_DTS 1.08E-11 −119.72
10: 88,347,001–88,350,000 GDD_DTS 9.43E-9 −24.04 10: 88,856,148 PH 8.38E-11 7.81
10: 122,877,001–122,880,000 EH 1.09E-7 4.11 10: 123,641,720 EHdivPH 1.21E-10 −0.012
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was an efficient solution to the high false positives caused by 
shallow depth in the split-read or pair-end methods. There-
fore, this method is considered to be suitable for the identi-
fication of deletions in shallow sequencing data, but can also 
be applied to long-read sequencing data. Owing to the great 
variance among the different maize inbred lines (Schnable 
et al. 2009), with the development of the maize pan-genome, 
more reference genomes will be used for alignment, which 
will expand variance calling in the future.

In this study, the deletions were distributed throughout 
the whole genome, as shown in Fig. 2a. There was a low 
deletion frequency in most of the centromere regions, except 
on chromosomes 2 and 9. As the deletion hotspots are only a 
3000-bp window, no deletion hotspots were located in cen-
tromeres (Table S4, Fig. 4). The same conclusion was drawn: 
that centromeres were located near low diversity regions of 
CNV/PAV except chromosome 9 between B73 and Mo17 
(Springer et al. 2009). The centromeres are difficult to map 
and analyze because of the repetitive sequence (Wolfgruber 
et al. 2009), and these tandem sequences complicate genome 
assembly and alignment using short-read sequencing. Poor 
assembly and alignment lead to low mappability, causing 
normalized neutral copy numbers in read count methods. 
Owing to the low combination and conserved sequences 
in the centromere region, most of the centromeres have 
low genetic diversity, whereas the numbers of haplotypes 
were different and could be divided into three groups. Cen-
tromeres 1, 4, and 6 show very low diversity; centromere 2, 
3, 8, and 9 were in the middle group; and centromeres 5, 7, 
and 10 had high diversity (Schneider et al. 2016). Therefore, 
the higher deletion frequency is high on centromere 9, or 
the surrounding region may be caused by the difference in 
genetic diversity.

Other than SNPs, SVs are also important in compara-
tive genomics. Therefore, we transformed deletions into 
applicable markers to detect genetic diversity in our large 
population. At present, most studies on population structure 
are based on some classical molecular markers. Compared 
with bi-allelic or multiple allelic markers such as SNPs or 
SSRs, deletions are more complicated owing to their varied 
size. However, in our study, we simplified deletions to a 
bi-allelic marker based on the copy number status of each 
window and investigated its power to explain genetic diver-
sity. Compared with SNPs located in the deletion window, 
the correlation was not robust in this population. There were 
two reasons for this: (1) the deletion is a 3000-bp window 
for one allele, the allele frequency of deletion reflects a rela-
tive extensive diversity compared with SNPs, which are only 
one base pair; the other is the deletion is PAV segment or 
copy number loss relative to “normal window”, which has 
the neutral copy number across the genome in our study, 
but SNPs are single nucleotide polymorphism, which are 
not related to the copy number of the located window. In 

our study, the subpopulation partition was consistent with 
SSRs and SNPs, indicating that deletions can be used for 
population structure analysis. Our analysis also illustrated 
the SS group had the lowest number of deletions among 
three subgroups, which may be due to the high sequence 
similarity of the B73 reference line in the SS group. The 
frequency of deletions was determined to be positively cor-
related with gene density, repeats, and relative centromere 
distance, indicating that deletions are enriched in regions 
described as the far ends of chromosomes, which possess 
more genes and repeats. These indicate that deletions can 
probably affect gene structure and are sometimes redundant 
in the maize genome (Swansonwagner et al. 2010).

The regulation of gene expression is very complex, 
occurring through regulatory elements and transcription 
factors in different tissues and at different time points. In 
our study, both the deletion proportion and eQTL analy-
sis indicated that the effect of deletion on gene expres-
sion was different in different tissues. The proportion 
of deletions was positively correlated with gene expres-
sion rank, indicating that larger deletion proportion can 
reduce gene expression, although large differences were 
not found. A previous study analyzed the transcriptomes 
of primary roots among B73, Mo17, and their  F1 hybrids. 
The results showed that 65 of 1124 genes were expressed 
in the hybrids but only in one of the parents, showing 
complementation of CNVs (Paschold et al. 2012). eQTL 
detection is a standard tool that can help us dissect regula-
tory pathways and elements (Fu et al. 2013; Wang et al. 
2018) and investigate the association between CNV and 
gene expression. Local and distant eQTL are two relative 
concepts in eQTL mapping studies, but the cutoff of divi-
sion for local and distant eQTL is not consistent across 
studies. Many studies used 20 kb (Fu et al. 2013; Liu et al. 
2020a; Pang et al. 2019), while Miculan et al. (Miculan 
et al. 2021) used 1 Mb as the cutoff. Considering the dele-
tion window size (3000 bp) is a relatively large interval 
compared with SNPs, the 50-kb cutoff is reasonable to 
divide the distant and local eQTL. In our study, distant 
eQTL are much more frequent than local eQTL, implying 
that trans-eQTL were more common than cis-eQTL. In 
contrast, the opposite effect was found on gene expression 
shows the trend. Deletions can influence gene expression 
by the presence and absence of cis-acting regulators, such 
as enhancers, repressors, or transcription binding sites 
located upstream of genes. As gene regulation is usu-
ally a complex network, changes of genes from the same 
network, especially transcript factors, may impact many 
genes, thus leading to trans-regulation. Using seven differ-
ent tissues, we have demonstrated that the common target 
genes were enriched in some essential biological functions 
and that unique eQTL play an important role in stress or 
stimulus response. This suggests that deletions indirectly 
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participate in the plant adaption to stress, and different 
inbred lines may lead to the differences in stress tolerance 
(Maron et al. 2013) or disease resistance (Dolatabadian 
et al. 2017).

Flowering time is not only a complex quantitative trait 
but also a basic adaptative trait. As it is controlled by many 
small-effect QTL in maize (Buckler et al. 2009), most stud-
ies have analyzed flowering time using GWAS and QTL 
mapping of large populations. Presently, many classical 
sites such as Vgt1 (Salvi et al. 2007), ZmCCT  (Yang et al. 
2013b), and ZCN8 (Meng et al. 2011), and allelic diversity 
underlying flowering time in landraces indicated that most 
of the SNPs associated with flowering time are usually 
located within large structural variants (Romero Navarro 
et al. 2017). Therefore, GWAS analysis of flowering time 
using deletion alleles is a complementary study. In this 
study, an essential gene, that is, Vgt1, was associated with 
four flowering time traits. Previous studies revealed that 
a miniature transposon (MITE) insertion into a conserved 
noncoding sequence can cause differential methylation to 
alter ZmRap2.7 expression (Castelletti et al. 2014; Salvi 
et al. 2007). However, only a few consistent genes were 
identified by SNPs and deletions for the same phenotypic 
dataset, and most of candidate genes were novel genes that 
cannot be found in known large-effect genes.

SNPs are the most widely used markers and are known 
to have essential roles in the analysis of evolution, GWAS, 
QTL mapping, and heterosis. In this study, we have com-
pared the efficiency of study population structure, eQTL, 
and GWAS with deletions. We found that PCA analysis 
using deletion markers could explain population structure, 
probably owing to strong drift and selection. In contrast, 
deletions and SNPs cannot reciprocally validate the results 
of eQTL and GWAS. Owing to the close relative distance 
between genes and cis-eQTL, cis-eQTL can be more 
commonly detected by deletions and SNPs than trans-
eQTL. Significant SNPs usually have larger effects than 
deletions, whether or not they are cis- or trans-eQTL. As 
we only collected all-expressed genes in this population 
as a dataset to avoid sequencing or low coverage errors, 
severe events, such as total gene or regulatory element 
loss are not included in this study. Therefore, more work 
is needed to characterize the impact of deletion in genome-
wide genes or transcripts with the development of high-
throughput third-generation sequencing technology.
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