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ABSTRACT 

The increase in global temperatures predicted by climate change models presents a 

serious problem for agriculture because high temperatures reduce crop yields. Protein 

biochemistry is at the core of plant heat stress response, and understanding the interactions 

between protein biochemistry and temperature will be key to developing heat-tolerant crop 

varieties. Current experimental studies of proteome-wide plant thermostability are limited by the 

complexity of plant proteomes: evaluating function for thousands of proteins across a variety of 

temperatures is simply not feasible with existing technologies. In this paper, we use homologous 

prokaryote sequences to predict plant Pfam temperature adaptation and gain insights into how 

thermostability varies across the proteome for three species: maize, Arabidopsis, and poplar. 

We find that patterns of Pfam domain adaptation across organelles are consistent and highly 

significant between species, with cytosolic proteins having the largest range of predicted Pfam 

stabilities and a long tail of highly-stable ribosomal proteins. Pfam adaptation in leaf and root 

organs varies between species, and maize root proteins have more low-temperature Pfam 

domains than do Arabidopsis or poplar root proteins. Both poplar and maize populations have 

an excess of low-temperature mutations in Pfam domains, but only the mutations identified in 

poplar accessions have a negative effect on Pfam temperature adaptation overall. These Pfam 

domain adaptation profiles provide insight into how different plant structures adapt to their 

surrounding environment and can help inform breeding or protein editing strategies to produce 

heat-tolerant crops. 

INTRODUCTION 

Understanding the interactions between temperature and plant development is 

becoming more important as global temperatures rise. Temperature-induced abiotic stress can 

affect every aspect of plant development, from morphology and physiology to biochemistry. 

Climate change is predicted to increase the levels of extreme temperature stress to which plants 

are exposed, and as a result, shift existing ranges and alter planting times for important 

agronomic species[1–3]. An increase in growing season temperatures will affect both crops and 
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natural vegetation. In crops, increasing temperatures are predicted to substantially reduce 

yields, with estimates of 1-7% yield reduction in major crop species for every 1℃ global 

temperature increase [4]. In other species, increases in maximum annual temperature are 

expected to increase the rate of local extinction and threaten both plant biodiversity and larger 

ecological networks that rely on keystone plant species [5,6]. Preventing substantial decreases 

in crop yield and ecological disasters due to species extinction requires a better understanding 

of how plant species adapt to high-temperature environments. 

Specific metabolic pathways involved in plant temperature sensing and response, 

including thermomorphogenesis, have been well-characterized [7]. Less-well studied is how the 

temperature of the environment shapes molecular evolution across the proteome. Interactions 

between biochemistry and temperature affect DNA, RNA, and protein composition, and are 

consistent across species and even across phylogenetic domains [8–12]. In plants, genome 

size, GC content, and proteome composition have been correlated with environmental 

temperature [13,14]. Temperature is also correlated with changes in diverse cellular processes 

including chromatin remodeling, lipid membrane composition, photosynthetic capacity, and 

hormone signaling in addition to protein expression [12,15–18].  

Because temperature affects protein folding, activity, and function, it likely also 

influences protein shifts toward increased or decreased stability [19–22]. Some proteins, like 

Phytochrome B and ELF3, are thermosensor proteins that have evolved to be only marginally 

stable. Denaturing these proteins initiates important stress response and circadian signaling 

pathways [23,24]. Other proteins remain only marginally stable because negative selection 

cannot prevent accumulation of destabilizing mutations. Purifying selection acts to avoid 

complete protein unfolding, but is too weak to optimize stability for most proteins [25]. As a 

result, there is a distribution of protein stabilities across the proteome. Most proteins are stable, 

but a significant proportion of the proteome - perhaps as much as 10-15% of all proteins - are 

only minimally stable and can be denatured by temperature shifts of as little as 4℃ [26]. Plants 

experience temperature shifts of this magnitude or larger daily. It remains unclear how well plant 

proteomes will be able to adapt to the increasing global temperatures projected in the next 

century.  

Proteins are composed of functional regions, or domains, that carry out specific 

biochemical reactions. We hypothesize that Pfam domain temperature adaptation affects plant 

thermotolerance and that Pfam adaptation profiles differ across species. Because biochemical 

and physical constraints on protein function are similar across all species, we use comparisons 

to prokaryotic Pfam domains to create profiles of temperature adaptation for maize, Arabidopsis, 

and poplar [27]. We compare Pfam adaptation profiles between plant organs and organelles 

and look at mutation effects across populations to investigate how amino acid mutations affect 

adaptation profiles within a species. These estimates of protein stability provide insight into how 

plant proteomes evolve and will be a useful starting point from which to develop strategies to 

improve plant heat tolerance as global temperatures rise.  
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MATERIALS AND METHODS 

Identifying eukaryote Pfam domains 

         Pfam domains were identified in maize (AGPv3; [28]), Arabidopsis (TAIR10; [29]), and 

poplar (v3.0; [30]) reference proteomes using the hmmscan function in HMMER3 and default 

parameters [31]. Pfam domains were aligned to existing prokaryote Pfam domain alignments, 

numerically recoded to reflect amino acid physicochemical properties, and assigned Pfam 

domain clusters based on sequence similarity to the prokaryotic sequences in the alignment. 

Realignment utilized the mafft --add function with default parameters to maintain original 

alignment coordinates [32]. Prokaryote GWAS results from Jensen et al. (in prep) were used to 

identify Pfam domain positions significantly associated with temperature. Each aligned amino 

acid residue in the maize, Arabidopsis, and poplar Pfam domains were compared to the 

prokaryote Pfam domain GWAS results to estimate temperature adaptation at that residue. 

Positions that were not significantly associated with temperature in prokaryotes were removed.  

Population nonsynonymous mutations 

         Previously-published VCF files containing sequence data and collection locations were 

downloaded for 1119 Arabidopsis [33], 31 maize [34], and 567 poplar accessions [35,36]. 

Nonsynonymous mutations were identified with snpEff, and the ‘-proteinFasta’ option was used 

to output both reference and variant protein fasta files for each accession [37]. SnpEff output 

files were filtered to identify unique nonsynonymous mutations in each accession. Allele 

frequencies were calculated from the original VCF files for all biallelic sites using vcftools [38]. 

Each identified nonsynonymous mutation and the corresponding reference amino acid was 

recorded, as was the mutation position and allele frequency. 
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Calculating mutation temperature sensitivity 

 
Figure 1: Process for calculating temperature sensitivity of each amino acid residue. Briefly, 

Pfam domain observations from maize, Arabidopsis, or poplar are aligned to an existing 

prokaryote multiple sequence alignment. Only the subset of sites that are significantly 

associated with prokaryotic optimal growth temperature (OGT) are kept. At each significant site, 

the eukaryote amino acid is identified, and the average OGT for prokaryotes sharing the same 

amino acid is recorded as the ‘optimal’ temperature of that residue and position. 

  

Average residue temperature was calculated by averaging the optimal growth 

temperatures (OGTs) across all prokaryotes sharing an amino acid at that site. Residue 

temperature averages were calculated for all positions that were significantly associated with 

OGT in prokaryotes (prokaryote OGT values range from 10.1-96.3ºC) and were recorded for all 

identified Pfam domains in maize, Arabidopsis, or poplar. These residue temperatures were 

used as a thermal proteome profile for each species based on the reference proteome (Figure 

1). For sites with nonsynonymous mutations identified by snpEff, optimal temperature values 

were recorded for both the reference amino acid and the variant amino acid. Mutation effects 

were compared between the major allele amino acid and the minor allele amino acid. For each 

site with a nonsynonymous mutation, the average prokaryote OGT for the ancestral amino acid 

was compared to the average prokaryote OGT for the derived amino acid to see whether the 

mutation likely increased or decreased Pfam domain thermostability. By necessity, this analysis 

focuses on single residues in isolation and does not consider interactions between amino acids 

within a folded protein. 
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Tissue- and organelle-specific protein expression 

         Organ-specific protein expression for Col-0, B73, and Nisqually-1 were identified from 

protein and mRNA expression atlas datasets [39–42]. Organelle expression data for plastid, 

mitochondria, and cytosol proteins was obtained from the Plant Proteome Database [43] for 

maize and the SUBA database [44] for Arabidopsis. Arabidopsis proteins were assigned a 

single unique organellar location using SUBAcon organelle calls [45].   

         Reference proteins were classified as leaf-expressed proteins or root-expressed proteins 

according to protein or mRNA expression levels in each organ. If multiple samples from leaf or 

root tissues were available, then these were merged to create a larger subset of proteins for 

testing. For maize and Arabidopsis, only proteins that were uniquely expressed in one organ 

and not the other were kept for the analysis. In poplar, the mRNA expression dataset contained 

too few organ-specific genes for comparison. Instead, the top 10% of mRNA transcripts were 

identified in each organ and used to compare protein stability. Protein counts for each organ 

and organelle are listed in Table 1. Pfam adaptation distributions were compared between 

organelles and between leaves and roots. 

 

Table 1: Gene counts for maize, Arabidopsis, and poplar in each organ and organelle. 

  Number of unique proteins 

Maize Arabidopsis Poplar 

Leaf-specific  933 346 730 

Root-specific 529 864 560 

Cytosol 254 2053 - 

Ribosome 208 239 - 

Plastid 1375 1357 - 

Mitochondria 155 735 - 

 

GO analysis 

Gene ontologies associated with genes in Arabidopsis thaliana or Zea mays were used 

to identify terms enriched in proteins with high temperature stability estimates in organellar 

proteins [46,47]. The topGO R package was used to compare GO terms for protein with 

average predicted-stability values above 40℃ to the set of all proteins with predicted stabilities 

[48]. topGO was also used to evaluate the trimodal distribution of root Pfam domain adaptation, 

with low-temperature domains considered to have values < 30.4℃, moderate-temperature 

domains having values from 30.4-34.4℃, and high-temperature domains having values > 

34.4℃. 
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RESULTS 

Predicted Pfam adaptation correlates with half-life and expression 

measurements 

Protein expression and half-life experiments in Arabidopsis were used to compare 

Predicted Pfam Adaptation (PPA) from prokaryote-based estimates of Pfam domain adaptation 

to experimental values for rosette leaf protein expression (3618 proteins) and protein half-life 

(750 proteins) [39,49]. There is a weak positive correlation between log-linearized protein half-

life and PPA (Figure 2A), and also between PPA and normalized protein expression values 

(Figure 2B). Surprisingly, the correlation between measured protein half-life and measured 

protein expression is even weaker than the correlations with Pfam adaptation estimates (Figure 

2C). 

 

 
Figure 2: OGT-based predicted Pfam adaptation (PPA) values are weakly correlated with 

measured expression and stability values. A) correlation between predicted protein stability and 

protein half-life (r = 0.12, p = 9.25e-4, n = 750); B) correlation between predicted stability and 

protein expression (r = 0.12, p = 4.19e-13, n = 3618); C) correlation between protein half-life 

and expression level (r = 0.07, p = 0.036, n = 1001).  

  

Predicted Pfam adaptation differs between organs and organelles 

Plant organs function in soil and air temperatures that fluctuate daily. In addition to 

changing air temperatures, leaf proteins experience variable light intensities and qualities, while 

root proteins function in the context of the larger rhizosphere. We hypothesized that the 

differences in environments experienced by these different plant organs would lead to different 

PPA profiles between Pfam domains in root-expressed proteins and leaf-expressed proteins. 

Organ-specific protein expression data are available for maize and Arabidopsis reference 

genomes, and organ-specific mRNA datasets are available in poplar [39,41,42]. These data 

were used to determine whether protein stability differs between plant leaves and roots. In 

maize there is a significant difference in average root protein stability and average leaf protein 

stability, with a significantly higher average stability for leaf proteins (t-test, p = 0.0056; Figure 

3A, Supplemental Figure 1). Neither Arabidopsis nor poplar have tissue-specific differences in 
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protein stability between leaf and root proteins as predicted by the OGT pipeline (t-test, p > 

0.05; Figure 3B-C). In all three species leaf proteins have higher average expression than root 

proteins, so the stability difference observed in maize proteins is not likely to be driven solely by 

expression differences between the tissues (Supplemental Figure 2).  

 

 
Figure 3: Leaf and root protein adaptation distributions predicted by the prokaryote 

optimal temperature pipeline. Organs have significantly different temperature profiles in maize 

(A) but not in Arabidopsis (B) or poplar (C). For clarity, distributions are truncated at 40℃, but all 

three have tails that extend beyond 60℃. Full distributions are included as Supplemental Figure 

1. 

 

Maize root Pfam domains separated into a trimodal distribution, with a low PPA (< 

30.4℃), moderate PPA (30.4-34.4℃), and high PPA (>34.4℃) groups of Pfam domains. GO 

enrichment analysis showed significant enrichment for specific classes of proteins in these three 

groups. Low-PPA domains were enriched for GO terms related to ion transport, vacuolar 

structures, and enzymes involved in redox reactions, including antioxidant, peroxidase, 

oxidoreductase, and hydrolase GO terms. Moderate-PPA domains were enriched for basic cell 

processes including transport and signal transduction, membrane structures, and kinase, 

transferase, and peptidase enzymes. High-PPA domains seemed to contain a mix of proteins, 

with enrichment for GO terms related to binding processes and negative regulation 

(Supplemental Table 1). 

In endotherms, respiratory chain and mitochondrial proteins operate at higher 

temperatures than normal body temperature, which suggests that some organelles operate at 

higher-than-ambient temperatures relative to the rest of the cell [50,51]. PPA comparisons 

across plant organelles suggests that organelles also operate at different temperatures within 

plant cells. Protein subcellular localization data are available for both Arabidopsis and maize 

[43,44]. PPA differs between organelles, and patterns of organellar stability are consistent in 

both maize and Arabidopsis. A Games-Howell test, which is robust when variances are unequal 

between groups, was used to compare protein stability predictions across organelles. Cytosol, 

plastid, and mitochondrial proteins have significantly different average stabilities (p < 0.0001 for 

all pairwise comparisons, Games-Howell test; Table 2). PPA varies widely within each 

organelle, and further investigation shows that ribosome and translation-associated GO terms 

are enriched in the set of Arabidopsis proteins with highest PPA values suggesting that proteins 

involved in translation have higher-than-average Pfam stability (Fisher’s test, p < 0.0001; 
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Supplemental Table 1). GO enrichment analysis for maize did not indicate enrichment in 

ribosomal proteins, but GO terms for non-membrane-bounded organelles and for protein-

containing complexes were enriched (Figure 4A, Supplemental Table 2). Ribosomal proteins 

are plotted separately from other organelles for both maize and Arabidopsis. A long tail of stable 

cytosolic proteins remains in Arabidopsis, suggesting that many other cytosolic proteins are also 

adapted to high temperatures. There is also a significant difference between plastid and 

mitochondrial PPA values, with plastid proteins predicted to be adapted to higher temperatures 

than mitochondrial proteins (Figure 4).  

 

 
Figure 4: Predicted Pfam adaptation distributions differ in cytosol, ribosome, mitochondria, and 

plastid organelles in maize (A) and Arabidopsis (B). Group means were compared with a one-

way ANOVA with unequal variances and pairwise comparisons were made using a Games-

Howell test. 

 

Table 2: Games-Howell pairwise comparisons of predicted protein stabilities across organelles 

in maize and Arabidopsis. 

Species Organelle 1 Organelle 2 p-value (adj.) 

Maize Cytosol Ribosome 8.71E-13 

Maize Cytosol Plastid 9.20E-14 

Maize Cytosol Mitochondria 2.65E-10 

Maize Ribosome Plastid 4.45E-6 

Maize Ribosome Mitochondria 4.19E-14 

Maize Plastid Mitochondria 0 
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Arabidopsis Cytosol Ribosome 7.74E-14 

Arabidopsis Cytosol Plastid 0 

Arabidopsis Cytosol Mitochondria 0 

Arabidopsis Ribosome Plastid 0 

Arabidopsis Ribosome Mitochondria 0 

Arabidopsis Plastid Mitochondria 4.57E-05 

Cumulative mutation effects vary within a population 

Many plant species extend across a wide range of environments. Maize accessions, for 

example, grow in a range of environments, from cool, high-altitude environments to tropical 

environments [15]. Amino acid mutations that accumulate as a species expands its range may 

reflect adaptation to new environments, so we hypothesized that nonsynonymous mutations 

would affect Pfam adaptation predictions and be related to the environment from which an 

accession is collected. To test this hypothesis, we identified nonsynonymous mutations in 

populations of maize, Arabidopsis, and poplar and determined whether the mutation increased 

or decreased PPA relative to the major allele. Maize shows a particularly interesting pattern with 

this analysis: individual amino acid mutations in maize tend to decrease PPA and reduce Pfam 

adaptation to high temperature. However, the cumulative effects of maize mutations tend to 

increase PPA overall (Figure 5A, 5D). Arabidopsis and poplar show more expected 

distributions, with a consistent pattern between the proportion of mutations that decrease PPA 

and the overall effect of those variants. Arabidopsis accessions tend to accumulate mutations 

that increase PPA across the proteome (Figure 5B, 5E), while poplar accessions tend to 

accumulate mutations that decrease PPA (Figure 5C, 5F).  

Maize originates from the Balsas River Valley in Mexico [52] and Arabidopsis is thought 

to originate from Morocco [53]. Poplar samples in the dataset come from the American Pacific 

Northwest coast [42]. To see whether mutations have a different effect as a species expands 

beyond its center of origin we calculated the difference between PPA estimates for the major 

allele and the minor allele and summed the effects across all nonsynonymous mutations in the 

individual. In all three species there is a negative relationship between the net mutation effects 

and the distance from the center of origin suggesting that the cumulative effect of mutations 

become more destabilizing as a species expands (Figure 6).  
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Figure 5: Predicted amino acid mutation counts and stability effects are consistent in 

Arabidopsis and poplar, but not in maize. Each point in the plots shows the cumulative count (A-

C) or effect (D-F) of nonsynonymous amino acids for a single landrace. Maize tends to 

accumulate individual mutations that reduce PPA (A), but these mutations have an overall 

positive effect on PPA (D). Arabidopsis accessions accumulate individual mutations that 

increase PPA (B) and these mutations also have a positive cumulative effect on PPA (E). Poplar 

accessions accumulate individual mutations that reduce PPA (C) and the overall effect of these 

mutations is reduced PPA (F). In A-C, the red dotted line indicates the point where the number 

of mutations that increase PPA equals the number of mutations that decrease PPA. In D-F the 

red dotted line indicates the point where the cumulative effects of nonsynonymous mutations is 

zero. 

  

 
Figure 6: Net effects of mutations on predicted Pfam adaptation (major allele PPA – minor allele 

PPA) reduce temperature adaptation as accessions move further from the center of origin for A) 

maize, B) Arabidopsis, and C) poplar. Distance from the center of origin was determined with 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452250doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452250
http://creativecommons.org/licenses/by-nc/4.0/


the geopy python package. The estimated center of origin for the species was (17.9373, -

102.1360) for maize, (31.7917, 7.0926) for Arabidopsis, and (45.5001, -118.0013) for poplar 

based on the center of origins identified for each species. 

DISCUSSION 

We predicted Pfam adaptation across Arabidopsis, maize, and poplar populations to see 

if protein adaptation is distributed differently across three species with different growth 

strategies. Because proteins are energetically expensive cell components, the translational 

robustness hypothesis predicts that highly abundant proteins in the cell will be more stable, as 

will proteins with longer half-life [49,54,55]. Consistent with this hypothesis, we find that our 

predicted Pfam adaptation values are positively and modestly correlated with both protein half-

life and protein expression. One benefit of using protein PPA estimates over measured stability 

values is that these estimates can be calculated for any species and can capture a larger 

proportion of the proteome than experimental studies. 

Proteins should be exquisitely adapted to their environment, but local environments may 

differ between different parts of a plant. In maize, leaf-expressed proteins are adapted to higher 

temperatures than root-expressed proteins, but there is no difference in PPA between leaf and 

root proteins in Arabidopsis or poplar. This difference in organ effect across species is unlikely 

to be due to differences in protein expression between leaf and root tissues because all three 

species had higher protein expression in leaves, but only maize shows a difference in thermal 

adaptation profile. Interestingly, the difference in maize appears to be a result of higher PPA 

values in maize leaf proteins relative to root proteins. Unlike both Arabidopsis and poplar, maize 

is a C4 grass species adapted to grow in hot environments, and maize net photosynthesis is 

maximized between 30-35℃ [56]. In contrast, net photosynthesis reaches a maximum in poplar 

between 25-30℃ [57] and Arabidopsis maximum photosynthetic rate occurs around 25℃ [58]. 

We hypothesize that the observed difference in leaf and root protein temperature profiles in 

maize reflects the higher temperatures in which this species is photosynthetically active.  

Consistent with observations in birds and mammals, maize and Arabidopsis show similar 

protein stability profiles across organelles, and the observed PPA distributions are also 

consistent with previous work comparing protein half-life and turnover rates in Arabidopsis [49–

51]. Surprisingly, cytosolic proteins showed a wide distribution of predicted Pfam adaptation 

values, with a long tail of high-PPA proteins that are enriched for ribosome and cytosolic 

ribosome GO terms. Ribosomal proteins are expressed at high levels in nearly every cell, and 

their high expression levels in addition to their importance for translation may explain their 

shifted stability distributions relative to other proteins in the cytosol [59].  

         To see how amino acid mutations affect predicted Pfam adaptation, we compared 

mutations across multiple accessions of maize, Arabidopsis, and poplar. Most nonsynonymous 

mutations in maize and poplar decrease PPA relative to the major allele, while Arabidopsis 

amino acid mutations increase PPA relative to the major allele. Intriguingly, the maize 

accessions used in this study have a tendency to accumulate destabilizing PPA mutations, but 

the net effect of those mutations tends to be increased adaptation to high temperatures. This 

pattern suggests that there are many weakly destabilizing mutations in maize that lower 

temperature adaptation, but whose effects can be offset by a few mutations that substantially 
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increase thermal stability. The extent to which these mutations affect protein function should be 

a topic for future studies. 

The last glacial maximum occurred only 18,000 years ago; a relatively short time in the 

context of plant evolutionary history. At that time, global temperatures were 4-8℃ lower than 

modern temperatures, even in the tropics [60]. Arabidopsis and maize are both annual pioneer 

species that expanded throughout the world within the last 4,000-10,000 years as vegetation 

patterns changed in response to temperature increases following the end of the glacial period 

[61–63]. Both species also benefited from large effective population sizes during their expansion 

[53,64]. We hypothesize that short generation times and large effective population sizes allow 

pioneer species to evolve and expand rapidly, leaving signatures of directional evolution within 

the proteome. Unlike maize and Arabidopsis, poplar is a long-lived perennial species. Like other 

trees, it may experience an adaptational lag that limits its ability to adapt to current climate 

conditions [65]. We expect allelic diversity to decline and deleterious mutations to accumulate 

as species expand to new environments far from the center of origin [34,53]. Our observed 

negative correlation between net mutation effect and distance from origin in all three species is 

consistent with this expectation, and the weaker relationship in poplar may stem from the slow 

rate of molecular evolution observed in trees [66].  

         Proteins that are only minimally stable are of particular interest for understanding plant 

heat tolerance because temperature sensitivity has been linked to a loss of specific important 

proteins that disrupt cell function and lead to cell death [54]. The results presented here 

demonstrate that protein thermostability profiles differ across organelles, and to some extent 

across tissues, and suggest that population-wide mutation effects also differ across species. 

Importantly, these results show that even successful pioneer species may be only marginally 

successful at avoiding destabilizing protein mutations, as shown by the large number of 

destabilizing mutation effects observed in maize. This suggests that targeted human 

interventions will be needed to help adapt crops and wild species to higher average 

temperatures. Further studies are needed to understand the complex interactions between 

protein thermostability and plant heat stress tolerance. Maintaining crop yields and mitigating 

ecological disaster due to local species extinctions will likely require both intensive breeding for 

heat tolerant varieties and targeted genome editing to stabilize plant proteins.  
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SUPPORTING INFORMATION 

Scripts used for the analyses described can be found on Bitbucket at 

bitbucket.org/bucklerlab/proteomethermalprofiling/. Data files can be found on CyVerse Data 

Commons at 

/iplant/home/shared/commons_repo/curated/Jensen_plantProteomeProfiling_Jun2021. 
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