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Abstract
Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is
a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we
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conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of
the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and
effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates
across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained,
and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these
ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth ge-
nome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide
a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be read-
ily extendable to other cereals.

Introduction

Carotenoids are lipid-soluble isoprenoids (typically C40) that
are synthesized by plants, algae, and some fungi, bacteria,
and yeast (reviewed in Li et al., 2016). Most carotenoids
have yellow, orange, or red colors that are a function of the
length of their conjugated double bond system and func-
tional groups (Khoo et al., 2011). Carotenoids containing ox-
ygen functional groups are termed xanthophylls, and those
without such groups are termed carotenes. In plants, carote-
noids are biosynthesized and localized in plastids, where
they play numerous roles in photosystem structure and light
harvesting and in photoprotection through their scavenging
of singlet oxygen and dissipation of excess excitation energy
via the xanthophyll cycle (Jahns and Holzwarth, 2012).
Additionally, 9-cis isomers of violaxanthin and neoxanthin
are precursors for the biosynthesis of abscisic acid (ABA), a
plant hormone with critical roles in embryo dormancy and
abiotic stress responses (Kermode, 2005; Tuteja, 2007), while
9-cis b-carotene is the substrate for synthesis of strigolac-
tones; these recently discovered plant hormones are in-
volved in branching and in attracting beneficial arbuscular
mycorrhizae (reviewed in Al-Babili and Bouwmeester, 2015;
Jia et al., 2018).

Provitamin A carotenoids are an essential micronutrient
in human and animal diets, as they are converted to vitamin
A (retinol) in the body via oxidative cleavage (reviewed in
Eroglu and Harrison, 2013). The most abundant provitamin
A carotenoids in the human diet are b-carotene, which
yields two molecules of retinol, and b-cryptoxanthin and a-
carotene, which yield one (Stahl and Sies, 2005; Combs and
McClung, 2017). Clinical vitamin A deficiency affects an esti-
mated 127.2 million preschool children and 7.2 million preg-
nant women in countries determined to be at risk (West,
2002). Symptoms can include xerophthalmia (“dry eye”),
which often progresses to night blindness, as well as in-
creased morbidity and mortality from infections (reviewed
in West and Darnton-Hill, 2008). It is estimated that vitamin
A deficiency is responsible for the deaths of approximately
650,000 preschool children per year (Rice et al., 2004). Two
nonprovitamin A xanthophylls, lutein and zeaxanthin, also
play important roles as macular pigments in the human fo-
vea (Beatty et al., 1999; Krinsky et al., 2003; Bernstein and

Arunkumar, 2020). Elevated dietary intake of these xantho-
phylls has been associated with decreased risk of age-related
macular degeneration (AMD; Abdel-Aal el et al., 2013;
Bernstein and Arunkumar, 2020), which affected an esti-
mated 170 million adults in 2014 and is projected to in-
crease as the global population ages (Wong et al., 2014).

Maize (Zea mays) is a primary food staple in much of
Latin America, sub-Saharan Africa, and Asia, where vitamin
A deficiency remains highly prevalent (West, 2002). There is
extensive natural variation in the levels of maize grain caro-
tenoids, which are most highly concentrated in the vitreous
(hard) portion of the endosperm (Blessin et al., 1963; Weber,
1987; Harjes et al., 2008). However, as a dietary staple, the
average provitamin A carotenoid levels of diverse yellow
maize lines provide less than 20% of the target level estab-
lished based on recommended dietary allowances (Harjes
et al., 2008; Bouis and Welch, 2010; Owens et al., 2014).
Genetic improvement of maize grain carotenoid (provitamin
A) levels through breeding, an example of biofortification,
has been proposed as a cost-effective approach for amelio-
rating vitamin A deficiency in at-risk populations (Graham
et al., 2001; Welch and Graham, 2004; Bouis and Welch,
2010; Diepenbrock and Gore, 2015).

Carotenoids are derived from the five-carbon central inter-
mediate isopentenyl pyrophosphate (IPP) produced by the
plastid-localized methyl-D-erythritol-4-phosphate (MEP)
pathway (Figure 1). The committed step toward carotenoid
biosynthesis is the head-to-head condensation of two 20-
carbon geranylgeranyl diphosphate (GGDP) molecules by
the enzyme phytoene synthase to form phytoene. Phytoene
is sequentially desaturated and isomerized to form lycopene,
which is then cyclized with two b-rings to form b-carotene
or with one b-ring and one e-ring to form a-carotene. a-
and b-carotenes are hydroxylated twice to form lutein and
zeaxanthin, respectively, and zeaxanthin is further modified
to yield violaxanthin and neoxanthin. The MEP and caroten-
oid biosynthetic pathways are well characterized in
Arabidopsis (Arabidopsis thaliana), and the genes are highly
conserved across plants, enabling the straightforward identi-
fication of homologs in other species. In maize, the MEP
and carotenoid pathways are encoded by 59 genes, which
can be considered a priori candidates for influencing natural
variation in maize grain carotenoid levels (Supplemental
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Data Set S1). Four of these a priori candidate genes—lyco-
pene epsilon cyclase (lcyE), b-carotene hydroxylase 1 (crtRB1),
zeaxanthin epoxidase 1 (zep1), and e-ring hydroxylase
(lut1)—have been shown to have genome-wide associations
with various carotenoid traits in maize grain (Harjes et al.,
2008; Yan et al., 2010; Owens et al., 2014; Suwarno et al.,
2015; Azmach et al., 2018; Baseggio et al., 2020). zep1 enco-
des zeaxanthin epoxidase, which converts zeaxanthin to vio-
laxanthin via antheraxanthin and was associated with

zeaxanthin and total b-xanthophyll levels, with large expla-
nation of phenotypic variance for these traits (Owens et al.,
2014; Suwarno et al., 2015). lut1 encodes a plastid-localized
cytochrome P450 that hydroxylates the e-ring of a-carotene
to form zeinoxanthin and was associated with zeinoxanthin
levels and ratios of a-branch compounds (Owens et al.,
2014). lcyE catalyzes e-ring cyclization of lycopene and is a
key branch point enzyme: alleles with low expression in
grain result in higher flux to b-carotene and b-xanthophylls

IPP and prenyl group synthesis
9 activities/19 genes

GGDP

dxs2
dxs3

15-cis-phytoene

9,15-di-cis-phytofluene

psy1

vp5, im1

lcyE

lut1

trans-lycopene

crtRB1, crtRB5

zep1

ccd1 (wc1)

α-carotene β-carotene

zeinoxanthin

lutein zeaxanthin

β-cryptoxanthin

antheraxanthin

violaxanthin

zep1

vp5, im1
9,9’-di-cis-ζ-carotene

crtRB1, crtRB5

neoxanthin

carotenoid 
degradation

Figure 1 Carotenoid biosynthetic pathway in maize; grain carotenoids are primarily produced in endosperm. Precursor pathways are summarized
in black boxes. The a priori genes identified in this study are denoted in blue italics and are placed at the pathway step(s) executed by the enzyme
that they encode. Gene abbreviations: 1-Deoxy-D-xylulose-5-phosphate synthase (dxs2 and dxs3); phytoene synthase (psy1); phytoene desaturase
(vp5); plastid terminal oxidase (im1); lycopene e-cyclase (lcyE); e-ring hydroxylase (lut1); b-carotene hydroxylase (crtRB1); zeaxanthin epoxidase
(zep1); carotenoid cleavage dioxygenase (ccd1), whitecap1 (wc1; a locus containing a varying number of copies of ccd1).
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(Harjes et al., 2008). Finally, crtRB1 encodes a nonheme
diiron hydroxylase that sequentially hydroxylates b-carotene
to produce b-cryptoxanthin and zeaxanthin; weakly
expressed alleles result in higher levels of b-carotene at the
expense of b-xanthophylls (Yan et al., 2010).

Provitamin A breeding efforts in maize focusing on
marker-assisted selection of favorable lcyE and crtRB1 alleles
have been successfully ongoing for more than a decade at
two CGIAR centers, in coordination with HarvestPlus and
numerous public and private partners (Saltzman et al., 2013;
Dhliwayo et al., 2014; Suwarno et al., 2014). Maize hybrid
and synthetic varieties that accumulate 40%–70% of the tar-
get provitamin A level have been released, and others with
higher levels are in national performance trials (Pixley et al.,
2013; Menkir et al., 2017). However, introgression of favor-
able alleles of lcyE and/or crtRB1 can have dramatically dif-
ferent effects depending on the genetic background (Babu
et al., 2013; Menkir et al., 2017; Gebremeskel et al., 2018),
suggesting that further investigation of these and other in-
volved genes may facilitate and expedite the consistent
achievement of target provitamin A levels. Furthermore, si-
multaneously enhancing and balancing several other priority
carotenoid traits (e.g. lutein, zeaxanthin, and total

carotenoids) will require a more comprehensive understand-
ing of the genetics underlying natural variation in maize
grain carotenoid content and composition.

While substantial insight into the carotenoid pathway has
been obtained from studies in Arabidopsis, its seed are green
and photosynthetic whereas those of most major crops, in-
cluding maize, are nonphotosynthetic. Thus, maize grain is
both inherently of interest as a key target crop for biofortifi-
cation efforts and also potentially provides a more suitable
model system for carotenoid accumulation in other major
crops. In the current study, we used the US maize nested as-
sociation mapping (NAM) panel to dissect, with high power
and resolution, the quantitative trait loci (QTL) and underly-
ing genes responsible for natural variation in grain caroten-
oid levels.

Results

Genetic dissection of carotenoid accumulation in
maize grain
We used the US NAM panel—25 families, each comprising
200 recombinant inbred lines (RILs) with B73 as a common
parent—to dissect the genetic basis of carotenoid content
and composition in maize grain. Seven grain carotenoid
compounds were quantified by high-performance liquid
chromatography (HPLC) with photodiode array detection.
These traits and one summed trait, total carotenoids, had
high estimates of line-mean heritability (0.70–0.94, Table 1).
These traits exhibited weak negative to strong positive cor-
relations in pairwise relationships (Supplemental Figure S1).
Through a joint-linkage (JL) analysis across all 25 NAM fami-
lies, we identified 117 individual-trait QTL (10–23 for each
trait; Tables 1 and 2; Supplemental Data Sets S2 and S3)
that each explained 0.7%–40.7% of the phenotypic variance
(Supplemental Data Set S4).

To dissect the identified QTL at higher resolution, we per-
formed a genome-wide association study (GWAS) using
�27 million HapMap v1 and v2 markers imputed on the
�3,600 NAM RILs (Table 2 and Supplemental Data Set S5).
A total of 983 marker–trait associations (101–142 per trait)
had a resample model inclusion probability (RMIP) value 5

Table 2 Genetic association results for carotenoid traits

Trait Number of JL-QTL Median size (SD) of
a = 0.01 JL-QTL sup-

port interval (Mb)

Number of JL-QTL
intervals containing a

priori genes

Number of GWAS-associated
variants in JL-QTL intervalsa

Maximum RMIP

Phytofluene 14 5.05 (27.96) 6 65 0.67
a-Carotene 11 2.64 (16.36) 5 44 0.87
b-Carotene 10 3.86 (6.72) 8 39 0.80
Zeinoxanthin 12 2.42 (27.79) 8 40 0.86
b-Cryptoxanthin 23 3.52 (26.73) 11 75 0.66
Lutein 14 3.17 (19.59) 7 50 0.88
Zeaxanthin 18 4.22 (29.42) 13 56 0.88
Total carotenoids 15 6.21 (20.77) 7 54 0.73
JL-QTL total 117 3.80 (23.58) 65 422

Notes: Summary of JL-QTL and GWAS variants identified for eight carotenoid grain traits evaluated in the US maize NAM panel
a GWAS variants residing within JL-QTL support intervals for each trait that exhibited a RMIP of 0.05 or greater.

Table 1 Sample sizes, ranges, and heritabilities for carotenoid traits

Trait No. of
lines

BLUEs Heritabilities

Median SD Rangea Estimate SE

Phytofluene 3,521 0.39 0.54 –0.43 to 3.02 0.72 0.02
a-Carotene 3,556 0.91 0.84 –0.70 to 4.77 0.70 0.03
b-Carotene 3,538 0.96 0.97 –0.58 to 5.49 0.78 0.03
Zeinoxanthin 3,465 1.44 1.99 –0.95 to 11.19 0.89 0.01
b-Cryptoxanthin 3,538 1.61 1.72 –0.56 to 10.04 0.94 0.01
Lutein 3,581 10.68 6.74 –0.72 to 39.47 0.94 0.01
Zeaxanthin 3,565 7.19 7.19 –0.77 to 42.05 0.94 0.01
Total carotenoids 3,581 27.33 13.69 –0.89 to 85.40 0.94 0.01

Notes: Medians and ranges (in mg g–1 dry grain) for untransformed BLUEs of eight
carotenoid grain traits evaluated in the US maize NAM panel, and estimated herita-
bility on a line-mean basis across 2 years.
SD, standard deviation of the BLUEs; SE, standard error of the heritability estimate.
a Negative BLUE values are a product of the statistical analysis. Specifically, it is pos-
sible for BLUEs to equal any value from –1 to +1.
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0.05 (Valdar et al., 2009; Table 2 and Supplemental Data Set
S5). Of these, 422 (42.9%) were within a corresponding trait
JL interval (Table 2), with 98 of these attributed to 42
markers associated with two or more traits, yielding a total
of 366 uniquely associated markers.

Given that individual carotenoid compounds share a bio-
synthetic pathway (Figure 1), it was not surprising that 80%
of overlapping QTL support intervals were significantly
pleiotropic (Supplemental Figure S2 and Supplemental Data
Set S6). When the 117 individual-trait QTL intervals were
merged based on physical overlap, 44 unique QTL were
obtained, 21 of which affected multiple traits (Supplemental
Data Set S3). We then applied a triangulation approach
(Diepenbrock et al., 2017) integrating JL-QTL effect estimates
(Supplemental Data Set S7), GWAS marker genotypes, and
RNA-sequencing (RNA-seq) expression abundances at six
developing kernel stages in the NAM parents (Supplemental
Data Set S8) to identify genes underlying the 44 unique QTL
(Supplemental Figure S3). The rapid decay of linkage dis-
equilibrium (LD) in proximity to GWAS-detected markers

(Supplemental Figure S4), in combination with the high re-
solving power of the NAM panel (Wallace et al., 2014), sup-
ported using a search space spanning ±100 kb of those
GWAS signals residing within a unique QTL for gene identi-
fication. Based on the confluence of strong triangulation cor-
relations for a single gene within these search spaces, 11
genes were identified as underlying a unique QTL (Figure 2).
All 11 genes were contained on the list of 59 a priori genes
known from prior studies in various plants to play roles in
IPP synthesis and carotenoid biosynthesis and degradation
(Supplemental Data Set S1). Five of these 11 genes were in a
class that we term correlated expression and effect QTL
(ceeQTL), in that their expression levels were significantly as-
sociated with the JL allelic effect estimates for the QTL at
multiple kernel developmental time points (Figures 2, 3 and
Supplemental Figure S3). All QTL with 44% phenotypic
variance explained (PVE) were resolved down to an individ-
ual gene, with three exceptions: QTL21 for phytofluene
(4.68% PVE), QTL24 for a-carotene (6.99%), and QTL34 for
a-carotene (5.21% PVE) (Figure 2 and Supplemental Table

ceeQTL
a

Common 
Support 
Interval

RefGen_v4 ID Annotated Gene Function

Percent phenotypic variance explained for each trait
b

PHYF ACAR BCAR ZEI BCRY LUT ZEA
TOT

CAR

No 1 Zm00001d027936 phytoene desaturase (vp5) 1.8 1.4 1.4 1.7

No 2 Zm00001d029822 epsilon ring hydroxylase (lut1) 6.1 1.5 3.0 0.9 1.0

No 5 Zm00001d001909 plastid alternative oxidase (im1) 2.5 2.1 1.2 1.9

Yes 7
Zm00001d003512/

Zm00001d003513
† zeaxanthin epoxidase 1 (zep1) 1.6 0.8 2.1 0.7 17.9 5.1

Yes 25 Zm00001d036345 phytoene synthase 1 (psy1) 11.7 5.0 9.7 5.7 8.0 8.2 24.7

Yes 27 Zm00001d019060 deoxy xylulose synthase 2 (dxs2) 4.8 7.7 8.1 9.7 11.3 3.5 3.7 10.6

Yes 33 Zm00001d011210 lycopene epsilon cyclase (lcyE) 19.6 21.4 33.6 25.8 40.7 23.0

No 35 Zm00001d045383 deoxy xylulose synthase 3 (dxs3) 1.7 1.2 1.4 1.4 1.8 4.1

Yes* 38 Zm00001d048373
whitecap 1 (wc1) [carotenoid 
cleavage dioxygenase 1 (ccd1)]

2.3 4.1 11.1 9.7 11.1

No 39 Zm00001d048469
beta carotene hydroxylase 5 
(crtRB5)

1.4

Yes 43 Zm00001d026056
beta carotene hydroxylase 1 
(crtRB1)

8.4 4.1 3.7

Figure 2 Percent phenotypic variance explained (PVE) by JL-QTL. Blue shading corresponds to the range of PVEs for JL-QTL, with darker blue indi-
cating higher PVEs. ceeQTL indicates significant correlations between expression values and JL-QTL allelic effect estimates at two or more time
points for at least one trait. The whitecap1 locus is a macrotransposon insertion-derived tandem-ccd1 gene array located 1.9 Mb away from the
progenitor ccd1-r locus (Tan et al., 2017). The high identity of mRNAs from the two loci does not allow ccd1 mRNA from the two loci to be distin-
guished and therefore locus-specific FDR-corrected P-values could not be calculated. However, a strong correlation was still observed between
ccd1 expression (as well as ccd1 copy number) and QTL38 allelic effect estimates for several traits (Figure 3 and Supplemental Table S2). In
RefGen_v4, zep1 was erroneously split into the two gene models indicated; in RefGen_v5 they have been correctly merged into a single gene
model with identifier Zm00001e007970. PHYF, phytofluene; ACAR, a-carotene; BCAR, b-carotene; ZEI, zeinoxanthin; BCRY, b-cryptoxanthin; LUT,
lutein; ZEA, zeaxanthin; TOTCAR, total carotenoids.
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S1). Of the 33 JL-QTL intervals that could not be resolved to
an individual gene (PVE of 0.66%–6.99%), 22 were single-
trait intervals (Supplemental Table S1).

Examination of specific variants
We employed two types of variant annotation analyses to
provide further functional insight into the 55 unique GWAS
variants (i.e. 50 SNPs and 5 indels) involved in one or more
marker–trait associations that were within ±100 kb of the
11 identified genes: genomic evolutionary rate profiling
(GERP; Davydov et al. 2010) and single-nucleotide polymor-
phism (SNP) effect analysis (SnpEff; Cingolani et al., 2012).
GERP uses multi-species alignments to predict the impact of
a variant as it relates to a quantitative measure of evolution-
ary conservation, with a positive GERP score (40) indicating
that a site may be under evolutionary constraint and muta-
tions with larger scores more likely to be deleterious
(Davydov et al., 2010; Rodgers-Melnick et al., 2015). GERP
scores from two prior studies (Kistler et al., 2018; Ramstein
et al., 2020) were collectively available for 53 of the 55
unique GWAS variants. Of these, 26 variants had positive
GERP scores in Kistler et al. (2018) and 12 SNPs had positive
GERP scores in Ramstein et al., (2020); (Supplemental Data
Set S9). SnpEff, a genomic annotation and functional effect
prediction tool (Cingolani et al., 2012), predicted 6 of the 55
SNPs to have low or moderate effects (Supplemental Data
Set S9). These results for individual genes are further de-
tailed below.

The role of a priori pathway genes
Of the 11 identified a priori genes, 5 encode enzymes that
act upstream of the main carotenoid pathway branch point,
where the linear carotene lycopene is cyclized to either a-
or b-carotene. All five loci were associated with multiple cy-
clic carotenoids (Figure 2), including provitamin A com-
pounds (b-carotene, b-cryptoxanthin, and a-carotene), and
all but phytoene synthase 1 (psy1) represent novel associa-
tions at the genome-wide level with carotenoid variation in
maize grain. Consistent with their sequential positions in the
upstream portion of the pathway, all of these loci except for
phytoene desaturase (PDS) (vp5) showed positive pleiotropy
(i.e. having positively correlated QTL allelic effect estimates
between pairs of traits) for the downstream cyclic carote-
noids with which they were associated (Supplemental File
S1). Two of these five genes, dxs2 and dxs3, encode 1-deoxy-
D-xylulose 5-phosphate synthase (DXS), the first enzymatic
reaction in the plastid-localized MEP pathway that produces
IPP for the biosynthesis of carotenoids and other plastidic
isoprenoids. dxs2 and dxs3 (QTL 27 and 35, respectively)
were associated with eight and six traits, with PVEs of 3.5%–
11.3% and 1.2%–4.1%. Of the two genes, dxs2 was found to
be a strong ceeQTL in the later stages of kernel develop-
ment (Figure 3). Six of 15 dxs2 GWAS variants had positive
GERP scores (Supplemental Data Set S9). Similarly, 6 of 12
dxs3 GWAS variants had positive GERP scores
(Supplemental Data Set S9) with one in the dxs3 genic

region (Chr 9: 20, 245, 139 bp) predicted to be a missense
variant with moderate effect by SnpEff (Supplemental Data
Set S9). The dxs2 and dxs3 homologs were the only MEP
pathway genes identified in this study. Phytoene synthase
(psy) catalyzes the synthesis of phytoene, the committed
biosynthetic intermediate for all carotenoids, from two
GGDP molecules (Buckner et al., 1996; Li et al., 2008). The
maize genome contains three psy loci: plants with a func-
tional psy1 allele accumulate carotenoids in the endosperm
and embryo, whereas those homozygous for a recessive null
allele lack carotenoids in endosperm without affecting the
carotenoid contents of other tissues (Buckner et al., 1996; Li
et al., 2008; reviewed in Gilmore, 1997; Koornneef et al.,
2002). The psy1 locus serves as a major genetic controller of
quantitative variation for carotenoids in maize endosperm,
the major site of carotenoid accumulation in grain (Zhu
et al., 2008; Fu et al., 2013b). psy1 (QTL 25) had 5.0%–11.7%
PVE for the seven carotenoids analyzed and the largest PVE
observed in this study for the sum trait of total carotenoids
(24.7%). When considering only the 14 families with non-
white endosperm parents, indicative of functional psy1
alleles, this locus still showed PVEs of 1.6%–10.8% for the
seven measured carotenoids and 22.5% PVE for total carote-
noids (Supplemental Data Set S10). psy1 was an extremely
strong ceeQTL (Supplemental Figure S3), with positive corre-
lations between expression and effect estimates for several
traits throughout kernel development, both across all 25
NAM families and across the 14 families with nonwhite en-
dosperm founders (Supplemental Data Sets S7, S11). Two of
the four psy1 GWAS variants had positive GERP scores, with
one in the psy1 genic region (Chr 6: 85,064,130 bp) pre-
dicted by SnpEff to be a missense variant with medium ef-
fect (HapMap_v2). This variant had the second-highest
GERP score observed for GWAS variants in this study
(Supplemental Data Set S9) and corresponds to a previously
identified variant in the fifth exon of psy1 termed SNP7,
which was significantly associated with total carotenoid lev-
els (Fu et al., 2013b). SnpEff predicted a Thr to Asn substitu-
tion, which is concordant with that identified and suggested
to be causal in Fu et al. (2013b).

The next step in the pathway involves the sequential
desaturation of phytoene to phytofluene and then f-caro-
tene by PDS (encoded by vp5; QTL 1), which requires plas-
toquinone (PQ) as an electron acceptor (Mayer et al., 1990;
Norris et al., 1995; Brausemann et al., 2017). The vp5 locus
was associated with phytofluene (a desaturation intermedi-
ate) as well as a-carotene, b-carotene, and b-cryptoxanthin,
with PVEs of 1.4%–1.8% (Supplemental Data Set S3). One of
the two vp5 GWAS variants (1.6 kb upstream) had a posi-
tive GERP score (Supplemental Data Set S9). Another a pri-
ori gene (im1, QTL 5) encodes a homolog of the
Arabidopsis plastid terminal oxidase (PTOX, IMMUTANS)
gene (Carol et al., 1999; Aluru et al., 2001), which transfers
electrons from PQH2 to molecular oxygen to replenish PQ
in the absence of an active photosynthetic electron trans-
port chain, i.e. prior to seedling greening (reviewed in
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Foudree et al., 2012). This locus was associated with phyto-
fluene, a-carotene, b-cryptoxanthin, and zeinoxanthin, with
PVEs of 1.2%–2.5%. The three im1 GWAS variants had posi-
tive GERP scores, one of which (6.6-kb distal of the gene)
had the highest GERP score observed in this study
(Supplemental Data Set S9).

Four biosynthetic genes downstream of the pathway
branch point were associated with carotenoid traits, and all
had major effects (Figure 2). lcyE is the committed step in
a-carotene synthesis (Cunningham et al., 1996; Bai et al.,
2009; Cazzonelli and Pogson, 2010) and is the major genetic
controller of relative flux into the a- or b-carotene pathway
branches (Harjes et al., 2008). Accordingly, lcyE (QTL 33)
showed negative pleiotropy (i.e. having negatively correlated
QTL allelic effect estimates between pairs of traits) for com-
pounds between the two pathway branches and positive
pleiotropy for compounds within the same branch
(Supplemental File S1). This locus had the largest PVE ob-
served in this study for each of the six a- and b-branch
compounds (PVE = 19.6%–40.7%) and—as also reported in
Harjes et al. (2008)—had no significant impact on total car-
otenoids (Figure 2). Of six lcyE GWAS variants, three had
positive GERP scores (Supplemental Data Set S9). Two of
these GERP positive SNPs were in the genic region, one of
which (Chr8: 143,021,025 bp) was associated with five traits
in GWAS and was predicted to be a synonymous variant
with low effect by SnpEff. This SNP was located 386 bp
downstream of a LCYE-50 transposable element and 347 bp
upstream of LCYE-SNP216, two significant variants identified
in a prior study (Harjes et al., 2008; Owens et al., 2014). The
other GERP positive genic variant (Chr8: 143,025,685 bp)
was predicted by SnpEff to cause an intron splice variant
with low effect and is located 100 bp downstream of a pre-
viously reported significant variant, LCYE-30 Indel (Harjes
et al., 2008; Owens et al., 2014).

Subsequent hydroxylations of the e- and b-rings of a- and
b-carotenes are performed by P450s or nonheme dioxyge-
nases, encoded by two and six genes, respectively, in the
maize genome. Of these eight genes, three were associated
with carotenoid traits in maize grain: b-carotene hydroxylase
1 (crtRB1) and b-carotene hydroxylase 5 (crtRB5), which pref-
erentially convert b-carotene to b-cryptoxanthin and then
zeaxanthin, and lut1, encoding CYP97C, a cytochrome P450-
type monooxygenase that preferentially hydroxylates the e-
ring of a-carotene to yield zeinoxanthin (Tian et al., 2004;
Quinlan et al., 2012). The primary impact of lut1 (QTL 2)
was on the levels of zeinoxanthin (PVE = 6.1%) and lutein
(PVE = 2.9%, Figure 2). All three distal lut1 GWAS variants
(35.6- and 3.2-kb upstream and 3.6-kb downstream) had
positive GERP scores (Supplemental Data Set S9). crtRB1
(QTL 43, also known as hyd3) had PVEs of up to 8.4% for
zeaxanthin, b-carotene, and b-cryptoxanthin, with negative
pleiotropic effects between its substrate, b-carotene, and its
products, b-cryptoxanthin and zeaxanthin (Supplemental
File S1). Four of the six crtRB1 GWAS variants had positive
GERP scores (Supplemental Data Set S9), with one in the

genic region (Chr10: 137,260,105 bp) predicted by SnpEff to
cause an intron splice variant with low effect. This variant is
located 110- and 1.0-kb upstream of the previously charac-
terized crtRB1-50TE and crtRB1-30TE markers, respectively
(Yan et al., 2010; Owens et al., 2014). crtRB5 (QTL39, also
known as hyd5) was identified with PVE of 1.4% for only a
single trait, zeaxanthin (Figure 2), and its single GWAS vari-
ant had a positive GERP score (Supplemental Data Set S9).
The gene encoding the subsequent b-branch enzyme, zep1,
had positive pleiotropic effects between b-cryptoxanthin, ze-
axanthin, and total carotenoids (Supplemental File S1). zep1
(QTL 7) primarily had a large effect on its substrate, zeaxan-
thin, with PVE of 17.9% (Figure 2). Concordant with this
large PVE for the highly abundant compound zeaxanthin,
this locus also had 5.1% PVE for the sum trait of total caro-
tenoids (Figure 2). One of two zep1 GWAS variants, which
was genic, had a positive GERP score (Supplemental Data
Set S9).

Finally, the maize genome encodes 12 different carotenoid
cleavage enzymes involved in ABA and strigolactone synthe-
sis and carotenoid degradation. However, only one, caroten-
oid cleavage dioxygenase1 (ccd1), was associated with
carotenoid levels in this study. CCD1 has been shown to be
active toward multiple cyclic and linear carotenoids in vitro
(Vogel et al., 2008). A single copy of ccd1 exists in all lines at
the progenitor ccd1-r locus, and in a limited number of lines
containing the dominant white cap1 (wc1) locus, a variable
number of tandem ccd1 copies (n = 1–11 in the NAM
founders) are found within a Tam3L transposon inserted 1.9
Mb proximal to ccd1-r (Tan et al., 2017). The QTL identified
at wc1 had PVEs of 2.3%–11.1% for four compounds and
11.1% PVE for total carotenoids, making it the second-
largest effect QTL for this trait after psy1 (Figure 2). This lo-
cus showed positive pleiotropy for all traits detected
(Supplemental File S1) and was a strong ceeQTL (Figure 3).
Correlations of ccd1 copy numbers in wc1 alleles from Tan
et al. (2017) with NAM JL-QTL allelic effect estimates from
our study were particularly strong for the most abundant
carotenoids, lutein, zeaxanthin, and total carotenoids (r = –
0.76 to –0.85), and moderate for a-carotene (–0.56)
(Supplemental Table S2). Additionally, there was a strong,
positive correlation detected between ccd1 copy number
and ccd1 expression level (log2-transformed FPKM)
(r = 0.80–0.84) across all six stages of kernel development.

Epistatic interactions play a minor role in
determining most carotenoid traits
We tested all pairs of JL-QTL peak markers for epistasis in a
joint analysis of all 25 NAM families, including 11 families
that each segregated for a recessive allele of psy1 that condi-
tions extremely low levels of carotenoids in the endosperm.
In total, 14 significant epistatic interactions were found
across the 25 families, but with relatively small PVEs. For in-
stance, psy1 has main-effect PVEs ranging from 5.0% to
24.7% for seven of the eight traits (Figure 3), but was an epi-
static partner in only three interactions, all with PVEs 51%

The Plant Cell, 2021 Vol. 33, No. 4 THE PLANT CELL 2021: 33: 882–900 | 889

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/33/4/882/6126473 by C

ornell U
niversity Library user on 15 June 2021

https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab032#supplementary-data


(Supplemental Figure S5 and Supplemental Data Set S12).
Only 3 of the 14 interaction terms had PVEs greater than
1%: zep1 with wc1 for zeaxanthin (1.09%), vp5 with QTL24
for a-carotene (6.06%), and dxs2 with QTL34 for a-carotene
(1.12%).

Discussion
Here, we performed an extensive dissection of the quantita-
tive genetic basis of maize grain carotenoid levels. With 11
of 44 carotenoid QTL resolved to their underlying genes, the
key precursor and core biosynthetic pathway genes under-
pinning these traits are now largely elucidated (Figure 2 and
Supplemental Table S1). With the exception of phytofluene,
these 11 genes explain 70.3%–90.9% of all PVE attributed to
QTL for each trait (Supplemental Figure S6). Notably, 8 of
the 11 genes have large effects (PVE 54% for one or more
trait), are highly pleiotropic (Supplemental File S1), and six
of the eight were also ceeQTL (Figure 2). Taken together,
these findings indicate that pleiotropy within the carotenoid
pathway may be predominantly regulated (directly or indi-
rectly) at the level of gene expression. A previous examina-
tion of kernel gene expression in a 508-line maize
association panel supports this conclusion: Fu et al. (2013a)
identified expression QTL (marker–gene expression associa-
tions) for 4 of our 11 identified genes (lcyE, crtRB1, ccd1, and
vp5), 2 of which (lcyE and crtRB1) are represented in the six
ceeQTL that we identified. Fu et al. (2013a) also reported
significant correlations between lcyE and crtRB1 expression
and grain provitamin A concentrations, providing additional
support for their designation as ceeQTL.

Importantly, in addition to confirming previously reported
gene/trait associations, we identified new and major breed-
ing targets in the IPP pathway and early steps of the carot-
enoid pathway. Four of the five genes we identified that
reside upstream of lycopene cyclization (vp5, im1, dxs2, and
dxs3) had not previously been associated with natural varia-
tion in maize grain carotenoids at the genome-wide level
(Harjes et al., 2008; Yan et al., 2010; Owens et al., 2014;
Suwarno et al., 2015; Azmach et al., 2018; Baseggio et al.,
2020). Most notably, dxs2 had the second-largest PVEs for
four traits in this study, including two provitamin A carote-
noids, b-cryptoxanthin and a-carotene, at 11.3% and 7.7%,
respectively. dxs2 and dxs3 were also associated with natural
variation for tocochromanol (vitamin E-related) traits
(Diepenbrock et al., 2017), which also utilize IPP in their syn-
thesis. As was observed for carotenoids, the PVEs of dxs2 for
tocochromanol traits were greater than those of dxs3, and
dxs2 was also a ceeQTL (FDR 5 0.05), while dxs3 was not
(Diepenbrock et al., 2017; Figures 2, 3 and Supplemental
Figure S3). Engineering and overexpression studies in
Arabidopsis and Escherichia coli have shown DXS is a limit-
ing activity in the MEP pathway (Harker and Bramley, 1999;
Estevez et al., 2001), and maize dxs2, a likely past target of
selection (Fang et al., 2020), appears to be the major genetic
control point for IPP synthesis for both carotenoids and

tocotrienols, and likely other plastidic isoprenoids in maize
grain.

Phytoene synthase catalyzes the committed step in carot-
enoid synthesis and was previously associated with variation
for five carotenoids in maize kernels (Fu et al., 2013b). We
confirmed that psy1 has large PVEs for these five carotenoid
traits and two others (Figure 2). Considerable haplotype-
level variation is still present at the psy1 locus in both tem-
perate and tropical maize (Swarts et al., 2017), and an allelic
series was seen in the present study (Supplemental Data Set
S7). This suggests that explicit attention to selecting or fixing
favorable haplotypes of both psy1 and dxs2, which exhibited
large PVEs for many of the same traits, should increase the
overall flux of IPP into the carotenoid pathway and further
enhance gains obtained from selection on other down-
stream genes (e.g. lcyE and crtRB1) for provitamin A bioforti-
fication of maize.

Genes encoding PDS (vp5) and the plastid alternative oxi-
dase (PTOX, im1), both of which are necessary for the se-
quential desaturation of phytoene to f-carotene via
phytofluene, were identified in this study. PDS introduces
double bonds into its carotenoid substrates and transfers
the electrons to PQ, an essential co-factor for carotenoid
biosynthesis, reducing it to PQH2 (Norris et al., 1995). In
photosynthetic tissues, PQH2 is efficiently re-oxidized by the
photosynthetic electron transport chain (Rosso et al., 2006;
Shahbazi et al., 2007; Rosso et al., 2009, reviewed in Foudree
et al., 2012). However, in nonphotosynthetic tissues that
have an underdeveloped photosynthetic electron transport
chain—e.g. germinating seedlings and developing maize
grain—PTOX transfers electrons from PQH2 directly to mo-
lecular oxygen to regenerate PQ for additional desaturation
cycles (Beyer et al., 1989; Mayer et al., 1990; Carol et al.,
1999; Wu et al., 1999, reviewed in Rodermel, 2002; Foudree
et al., 2012). PTOX loss-of-function mutations in Arabidopsis
negatively affect carotenoid synthesis in developing seed-
lings, resulting in albino sectors of vegetative tissue that
hyper-accumulate the PDS substrate phytoene (Wetzel
et al., 1994; Carol et al., 1999; Wu et al., 1999; Rosso et al.,
2009). Maize vp5 and im1 were associated with the PDS
desaturation intermediate phytofluene (Figure 2) but also
with three downstream provitamin A active carotenoids,
suggesting that vp5 and im1 could be used as targets for
breeding or metabolic engineering efforts to enhance kernel
provitamin A content.

While biosynthesis is an important control point for carot-
enoid levels, degradation and the susceptibility to degrada-
tion must also be considered. For example, CAROTENOID
CLEAVAGE DIOXYGENASE4 (CCD4) in Arabidopsis is a
large-effect contributor to natural variation in seed carote-
noids (Gonzalez-Jorge et al., 2013), primarily due to its pref-
erential cleavage of b-carotene and epoxy-xanthophylls,
whose levels are elevated 3–7-fold in ccd4 null mutants.
Zeaxanthin epoxidase (ZEP) has an even greater impact on
total carotenoid levels, primarily because ZEP-mediated ep-
oxidation increases susceptibility to degradation by CCD4. A
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zep null mutant increased zeaxanthin levels by 40-fold, lu-
tein, the most abundant carotenoid in wild-type Arabidopsis
seed, by 2.2-fold, and total carotenoids by 5.7-fold
(Gonzalez-Jorge et al., 2016). In maize, zep1 and wc1 (encod-
ing CCD1) had analogous impacts on natural variation in ze-
axanthin, lutein, and total carotenoids, and both were
ceeQTL in developing kernels. Unlike CCD4, maize CCD1 is
cytosolic (Tan et al., 2003) and only has access to the outer
plastid envelope but is thought to have increased access to
plastid-localized carotenoids as plastid membranes lose in-
tegrity during kernel desiccation (Tan et al., 2017).

A major finding of this work is that although 10–23 QTL
were detected per trait, a large percentage of variance could
be explained by only two to five major-effect QTL that con-
tributed 4%–41% PVE, depending on the trait (Figure 2).
These major-effect QTL are high-impact targets for
genomics-enabled biofortification and/or metabolic engi-
neering strategies. For example, just four genes—lcyE, crtRB1,
dxs2, and psy1—explained the majority of variation for the
three provitamin A carotenoids. These four genes explained
75% of b-carotene variation attributed to QTL; three of the
four (lcyE, dxs2, and psy1) explained 52% for b-cryptoxan-
thin; and just two (lcyE and dxs2) explained 64% for a-caro-
tene (Figure 2 and Supplemental Data Set S4). These
findings suggest that simultaneous increases in both b-caro-
tene and b-cryptoxanthin levels, and potentially a-carotene
levels, may be achievable by incorporating the appropriate
alleles of this set of four major-effect genes in selection
decisions.

Currently, only crtRB1 and lcyE alleles are used in marker-
assisted selection efforts (Prasanna et al., 2020). While the
combination of two favorable haplotypes of these genes was
previously found to decrease total carotenoid levels (Babu
et al., 2013), neither crtRB1 or lcyE (separately or in interac-
tion) were associated with total carotenoid levels in the pre-
sent study (Figure 3). Rather, total carotenoids were
positively affected by dxs2 and psy1 alleles and negatively
conditioned by specific zep1 and ccd1 alleles (Figure 3).
Thus, the previously reported decreases in total carotenoid
levels observed when combining favorable lcyE and crtRB1
alleles in the same background can likely be circumvented
by conditioning on the presence of the appropriate psy1,
ccd1, and zep1 alleles. Enabling tandem selection of lcyE and
crtRB1 in this manner should afford considerable gains in
both total and provitamin A carotenoid levels, given the
large PVEs and allelic effect estimates of lcyE observed in
this study in families with both temperate and tropical
founders (Figure 3 and Supplemental Data Set S7). In addi-
tion to provitamin A carotenoids, lutein and zeaxanthin are
the most abundant carotenoids in maize grain and are
themselves of direct interest in breeding for human health
given their roles in eye health. Three genes—lcyE, psy1, and
wc1 (ccd1)—explained 77.3% of lutein variation attributed
to QTL, and these three genes, along with zep1, explained
74.1% for zeaxanthin. The data in this study indicate that
the simultaneous improvement and balancing of provitamin

A and nonprovitamin A carotenoids for human should be
feasible.

The high power and resolution of the US maize NAM
population has allowed the majority of the phenotypic vari-
ation of maize grain carotenoids to be dissected, in some
cases approaching the upper limits of the high heritabilities
for these traits (Table 1 and Supplemental Data Set S4). The
number and PVE of epistatic interaction terms were found
to be minor (Supplemental Figure S5)—including compared
with those observed for tocochromanol (vitamin E-related)
traits in the US maize NAM panel (Diepenbrock et al.,
2017)—further suggesting that largely additive variation can
be exploited for carotenoid traits in maize grain. The exten-
sive information provided here should focus and accelerate
genomics-enabled breeding and/or metabolic engineering
efforts to simultaneously achieve provitamin A targets
(Bouis and Welch, 2010) and improve the levels of other
health-beneficial carotenoids in human populations consum-
ing maize as a staple. The identified genes specifically pro-
vide direct, high-value targets for maize biofortification
breeding programs. An important next step will be allele
mining and examination of allele and haplotype frequencies
for the identified genes in germplasm pools and breeding
populations. The identified genes are also logical candidates
to be assessed as potential controllers of carotenoid varia-
tion in seeds of other abundantly consumed monocot
crops.

Materials and methods

Field environments and plant materials for genetic
mapping
The design of the maize (Z. mays) NAM population has
been previously described (Yu et al., 2008; Buckler et al.,
2009; McMullen et al., 2009). The experimental field design
in 2009 and 2010 for this study—which included the NAM
panel, the intermated B73 � Mo17 (IBM) family (Lee et al.,
2002), and a 281-line inbred diversity panel (Flint-Garcia
et al., 2005)—was conducted as described in Chandler et al.
(2013) and Diepenbrock et al. (2017). In brief, 5,000 RILs—
25 families, with approximately 200 RILs per family—were
generated by crossing 25 diverse inbred lines with B73, a
common parent. The 25 families of the NAM population,
along with the IBM family (Lee et al., 2002) and a 281-line
inbred diversity panel designed for association mapping
(Flint-Garcia et al., 2005) were evaluated in West Lafayette,
IN. These evaluations were conducted at the Purdue
University Agronomy Center for Research and Education in
the summers of 2009 and 2010 (i.e. two environments), us-
ing standard agronomic practices. The field design for these
experiments has been previously described (Chandler et al.,
2013). In brief, a sets design was used in each environment,
with a given set containing all �200 RILs of a family or the
281-line association panel. Each set that contained a NAM
family was planted in an augmented 10� 20 incomplete
block a-lattice design, with the two parental lines included
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as checks in each incomplete block. Each set that contained
the 281-line association panel was planted in an augmented
14� 20 incomplete block a-lattice design, with maize inbred
lines B73 and Mo17 included as checks in each incomplete
block. One replicate of the entire experiment of 5,481 lines
from the 25 NAM families, the IBM family, and the 281-
member association panel, plus repeated check lines as de-
scribed above (for the family sets and 281-line panel), was
grown in each of the two environments. Two fields were
used in 2009 to grow this entire single replicate, and one
field was used in 2010. A single experimental unit was com-
posed of a single inbred line planted in a one-row (3.05 m)
plot, which would contain 10 plants on average. At least
four plants in each plot were self-pollinated by hand. Grain
from these self-pollinated ears was harvested at physiological
maturity, dried to �15% moisture content, shelled, and
bulked (within the plot) to form a representative sample for
carotenoid quantification.

Carotenoid quantification
Extraction of carotenoids was conducted on �50 ground
kernels per plot, and seven carotenoid compounds—a-caro-
tene, b-carotene, b-cryptoxanthin, lutein, phytofluene, zea-
xanthin, and zeinoxanthin—as well as the sum trait of total
carotenoids were quantified via HPLC as previously de-
scribed (Owens et al., 2014), with units of lg g–1 seed.
Carotenoids were assessed based on HPLC data passing in-
ternal quality control measures that were collected on 9,411
grain samples from 4,871 NAM and 198 IBM RILs, as well as
the 850 repeated parental check lines. HPLC-generated
measurements of carotenoid compounds and their respec-
tive isomers were combined for zeinoxanthin and b-cryptox-
anthin to obtain an overall value for the level of the
compound. For technical replicates of the same sample, the
mean value of the replicate measurements was recorded for
each of the seven carotenoids; i.e. a-carotene, b-carotene, b-
cryptoxanthin, lutein, phytofluene, zeaxanthin, and zeinoxan-
thin. Initial total carotenoid values were calculated as the
sum of the quantified levels for these seven compounds.

Phenotypic data processing
The HPLC data set was further cleaned to standardize sam-
ple genotype names, as associated with experimental field
location, and any samples that lacked proper field data were
removed. For each NAM family dataset, we retained only
samples with genotype assignments belonging to that family
or the family’s parental genotypes (which were used as
checks). Samples from each NAM family and their parental
genotypes were categorized as “yellow-to-orange-grain fam-
ily” (Y) or “white-grain family” (W) based on the grain endo-
sperm color phenotype of the non-B73 parent of that
family. For all samples in the “W” class for which it was
available, the genotype at the psy1 locus, defined as the ge-
nomic region spanning chromosome 6 position 82,017,148
to 82,020,879 bp on the AGPv2 maize reference genome,
was obtained from GBS SNP marker data downloaded from

MaizeGDB (Portwood et al., 2019). To eliminate possible
sample contamination and select the subset of samples
expected to have a functional core carotenoid pathway,
samples in the “W” class were further classified into “low”
and “high” carotenoid classes using Gaussian decomposition
applied to the total carotenoids values for each NAM family
� year combination. Gaussian decomposition was per-
formed using the R package “mclust,” specifying two mix-
ture components and one-dimensional variable variance
(Scrucca et al., 2016; R Core Team, 2018). Samples with clas-
sification uncertainty 510% were assigned to the
“ambiguous” class. Any samples in the “W” class that
switched carotenoid class assignments between years were
removed from further analysis, as well as those that were
assigned to the “low” or “ambiguous” carotenoid class in
both years or that had a homozygous alternate genotype
call at the psy1 locus. Finally, samples in both the “W” and
“Y” classes were subjected to outlier analysis. Specifically, for
each NAM family � year combination, a quartile analysis
was performed on the total carotenoid values using the
“boxplot.stats” function in R, and any samples with total
carotenoids values at least 1.25 * interquartile range (IQR)
smaller than the first quartile were marked as low total car-
otenoids outliers and removed from further analysis.

Following the sample-level filtering, compound measure-
ments were set to missing for any NAM family � year �
compound measurement combination that did not have at
least 20 samples measured for that compound, and all sam-
ples were removed for any NAM family � year combination
that did not have at least 40 remaining samples. For the
remaining samples, any missing data for a given compound
was assigned a value generated by random uniform sam-
pling from the interval (0, min_measured), where min_-
measured is the lowest (minimum) value measured for that
compound in the corresponding NAM family � year group
of samples. Following this process, the total carotenoids val-
ues were recalculated to include the assigned random uni-
form values.

As in Diepenbrock et al. (2017), the IBM RILs were not in-
cluded in JL analysis or the GWAS, as they exhibit a differen-
tial recombination rate (due to being intermated). However,
IBM was still included in the model fitting process to gener-
ate best linear unbiased estimators (BLUEs) along with the
25 NAM families to provide additional information regard-
ing spatial variation within environments and potential
interactions of genotype and environment.

To examine the data for phenotypic outliers, mixed linear
model selection was conducted using a custom R script that
calls ASRemlR version 4 (Butler et al., 2017). This model se-
lection process was conducted separately for each of the
eight traits. To conduct model selection, a mixed linear
model was fit where the grand mean was the only fixed ef-
fect, and random effects automatically included in the base
model (i.e. without being tested in model selection) were
the genotypic effects (family and RIL nested within family)
and baseline spatial effects (year and field nested within
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year). The best random structure was then identified using
the Bayesian information criterion (BIC; Schwarz, 1978). The
random structures that were tested included all combina-
tions of the following, thus representing one to five terms
(or zero, if the base model were to exhibit the most favor-
able BIC value) to be fit as additional random effects: a labo-
ratory effect (HPLC auto-sampler plate) and certain
additional spatial effects (set nested within field within year,
block nested within set within field within year, family
nested within year, and RIL nested within family within
year). The best residual structure was then also identified us-
ing BIC, after the best random structure had been identified
and included in the mixed linear model. The residual struc-
tures that were tested, to account for potential spatial varia-
tion across rows and/or columns within each environment,
were identity by year; autoregressive for range and identity
for row, by field-in-year; identity for range and autoregressive
for row, by field-in-year; and autoregressive (first-order,
AR1�AR1) for range and row, by field-in-year. Field-in-year
represents a new factor that combines the field name and
year to enable fitting a unique error structure for each of
the three fields.

From the final fitted model for each trait, phenotypic out-
liers with high influence were detected using the DFFITS
(“difference in fits”) criterion (Neter et al., 1996; Belsley et al.,
2005) as previously described in Diepenbrock et al. (2017),
and observations were set to NA if they exceeded a conser-
vative DFFITS threshold previously suggested for this experi-
mental design (Hung et al., 2012). Following outlier removal,
the model-fitting process described above was conducted
again to estimate BLUEs for the RILs, but with the genotypic
effects of family and RIL within family now included as
sparse fixed effects rather than random effects. Note that
the model was first fit in this step with these genotypic
effects as random, then updated with these effects as sparse
fixed. All terms except for the grand mean were again fitted
as random effects to estimate variance components for the
calculation of line-mean heritabilities. These heritability esti-
mates were calculated only across the 25 NAM families
(Hung et al., 2012), and the delta method was used to ob-
tain standard errors (Holland et al., 2003).

The BLUEs generated for each trait were then examined
to detect any remaining statistical outliers. Specifically, the
Studentized deleted residuals (Kutner et al., 2004) were ex-
amined using PROC MIXED in SAS version 9.3 (SAS Institute
2011). These residuals were obtained as in Diepenbrock
et al. (2017) from a parsimonious linear model that con-
tained the grand mean and a single randomly sampled, rep-
resentative SNP (PZA02014.3) from the original genetic map
for the NAM panel (McMullen et al., 2009) as fixed effects.
The BLUE value of a given RIL for a given trait was set to
NA if its corresponding Studentized deleted residual had a
magnitude greater than the Bonferroni critical value of
tð1 – a=2n; n – p – 1Þ: The significance level (a) used in
this step was 0.05; n was the sample size of 3,585 RILs; and
p was the number of predictors.

The Box–Cox power transformation (Box and Cox, 1964)
was then performed separately on BLUEs for each trait as in
Diepenbrock et al. (2017). Briefly, the same parsimonious
model used to generate Studentized deleted residuals was
also used to identify the most appropriate Box–Cox trans-
formation (with k tested between –2 and 2, step of 0.05)
that corrected for heteroscedasticity and error terms that
were not normally distributed. PROC TRANSREG within SAS
version 9.3 (SAS Institute 2011) was used to find the optimal
k for each trait (Supplemental Table S3) and apply the
transformation. Note that the Box–Cox power transforma-
tion requires positive input values. Each of the traits had
some number of negative BLUE values (ranging from 1 to
283 RILs per trait); these are a reasonable result of the
BLUE-fitting process (Burkschat, 2009). The lowest possible
integer needed to make all values positive for a given trait
was added as a constant across that trait vector for all of
the RILs before applying the transformation; this constant
had a value of 1 for all traits.

JL analysis
A 0.1-cM consensus genetic linkage map (14,772 markers)
was used for JL analysis, as in Diepenbrock et al. (2017). This
map was generated by imputing SNP genotypes at 0.1-cM
intervals in a process previously described (Ogut et al.,
2015), using genotyping-by-sequencing (GBS) data for
�4,900 NAM RILs as anchors (Elshire et al., 2011; Glaubitz
et al., 2014). JL analysis was then conducted as previously
described (Diepenbrock et al., 2017) across the 25 families of
the NAM population to map QTL for natural variation in
one or more maize grain carotenoid traits. Briefly, joint step-
wise regression was implemented using modified source
code in TASSEL version 5.2.53 (Bradbury et al., 2007; modi-
fied source code provided on GitHub), with transformed
BLUEs as the response variable and the family main effect
forced into the model first as an explanatory variable. The
effects of each of the 14,772 markers in the 0.1-cM linkage
map, nested within family, were then tested for inclusion in
the final model as explanatory variables. The significance
threshold for model entry and exit of marker-within-family
effects was based on conducting JL analysis on 1,000 permu-
tations of transformed BLUEs for each trait and selecting the
entry P-value thresholds (from a partial F-test) that control
the Type I error rate at a = 0.05. The permutation-derived
entry thresholds are listed in Supplemental Table S3. Exit
thresholds were set to be twice the value of these empiri-
cally derived entry thresholds, so that a marker could not
enter and exit the model in the same step.

Upon examining the results of initial JL analysis conducted
via the above-described procedure, peak markers in the vi-
cinity of psy1 for various traits, which is the only locus in
this genomic interval expected to control for the presence/
absence of endosperm carotenoids in white-grain families,
were found to have low minor allele counts exclusively
among white-grain families (with fewer than 40 individuals
across all 25 families having a genotypic state score greater
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than zero; zero represents homozygosity for the major al-
lele), resulting in apparent inflation of the PVE by these
markers. The RILs that had a genotypic state score greater
than zero at the psy1-proximal peak marker for a given trait
were removed from the data set for all traits (prior to the
DFFITs step and BLUE generation), comprising 54 unique
RILs removed in total. The analytical pipeline was then re-
conducted from the mixed linear model selection step to
re-generate JL models and for use of the results in all down-
stream analyses. After this additional removal step, it was
confirmed that no markers in the vicinity of psy1 exhibited
significant JL signal in any white-grain families. The sample
sizes per population in this final data set used in all 25-fam-
ily analyses are listed in Table 1. The permutation procedure
was also applied within the 14 NAM families with parents
with nonwhite endosperm color to enable an additional,
separate JL analysis within those families using the appropri-
ate thresholds, e.g. due to the reduced sample size.

Some multicollinearity between markers in the consensus
map was expected, and indeed for two traits (zeaxanthin
and zeinoxanthin), two pairs and one pair of markers pre-
sent in the final JL model, respectively, had a Pearson’s cor-
relation coefficient (r) with magnitude greater than 0.8
between their SNP genotype states. In these cases, the
marker with the smaller sum of squares within the JL model
was removed. A re-scan procedure was then conducted in
the vicinity of any of the remaining peak markers for a given
trait to test whether the removal of the multicollinear
marker(s) meant a shift in the association signal. Specifically,
if another marker within the support interval now had a
larger sum of squares than the original peak marker, that
marker would replace the original peak marker in the model,
and this process was repeated (including re-calculation of the
support interval) until a local maximum in the sum of
squares was found. The final peak JL markers following re-
scan, along with the family term, were then re-fitted to obtain
final statistics from the JL analysis of each trait. Allelic effect
estimates for each QTL, nested within family, were generated
as in Diepenbrock et al. (2017) by fitting final JL models with
the “lm” function (R, lme4 package), which also evaluates the
significance of these QTL-within-family terms in two-sided in-
dependent t tests. In this step, the false discovery rate was
controlled at 0.05 via the Benjamini–Hochberg procedure
(Benjamini and Hochberg, 1995).

Support intervals (a = 0.01) were calculated for the JL-QTL
in each final model as previously described (Tian et al.
2011). Logarithm of the odds scores were calculated (R,
“logLik” base function). The PVE by each joint QTL was cal-
culated using previous methods (Li et al., 2011), with some
modifications as described in Diepenbrock et al. (2017) to
account for segregation distortion across the families. While
transformed data were used throughout the analyses in the
present study, including in all steps that required statistical
inference, it was also desired to more closely examine the
signs and magnitudes of QTL allelic effect estimates on the
original trait scale and in directly interpretable units of

nutrition. For this single purpose, the final JL model deter-
mined using transformed BLUEs was refit with untrans-
formed BLUEs without further model selection or re-scan.

Genome-wide association study
Chromosome-specific residuals for each trait were obtained
from the final transformed JL models with the family term
and any joint QTL located on the given chromosome re-
moved. These residuals were used as the response variable
in GWAS, whereas the genetic markers tested as explanatory
variables consisted of the 26.9 million variants (SNPs and
indels 515 bp) of the maize HapMap v. 1 and 2 projects
(Gore et al., 2009; Chia et al., 2012), as previously described
(Wallace et al., 2014), that were upliftable to RefGen_v4
coordinates. Uplifting of HapMap markers from the B73
RefGen_v2 to RefGen_v4 assembly was conducted by clip-
ping 50 nucleotides from each side of a given marker in its
v2 position (101 nucleotides of flanking sequence in total).
These were then aligned to the B73 RefGen_v4 assembly us-
ing Vmatch (v2.3.0; Kurtz, 2019), with the options of -d -p -
complete -h1. The resulting alignments were then filtered to
keep the highest scoring and unique alignment for each
marker. If a marker did not have a high-confidence, unique
alignment, it was omitted from the set of upliftable markers.

The upliftable markers were projected onto the NAM RILs
using the dense 0.1-cM resolution linkage map, and GWAS
was conducted in the NAM-GWAS plugin in TASSEL version
4.1.32 (Bradbury et al., 2007) as previously described
(Wallace et al., 2014; Diepenbrock et al., 2017). Briefly, a for-
ward selection regression procedure was conducted 100
times for each chromosome, with 80% of the RILs from ev-
ery family sub-sampled each time. For each trait, the model
entry threshold was empirically determined by conducting
GWAS on 1,000 permutations of chromosome-specific resid-
uals for each trait and averaging the results across chromo-
somes (Wallace et al., 2014) to control the genome-wide
Type I error rate at a = 0.05 (Supplemental Data Set S12).
The significance threshold used for a marker in GWAS was
its RMIP value, or the proportion of the 100 final GWAS
models in which that marker was included (i.e. meeting the
model entry threshold). Markers with an RMIP 5 0.05 were
considered in downstream analyses.

RNA-seq
Sample collection for RNA-seq—in three biological replicates
of the NAM founders at six developing kernel stages, and in
root and shoot tissues—and RNA sequencing and sample
quality assessment were conducted as described in
Diepenbrock et al. (2017). Briefly, one self-pollinated ear per
plot was sampled for each developing kernel stage, frozen in
liquid nitrogen in the field and held at –80�C until shelling
and the removed kernels were stored at –80�C. Thirty ker-
nels were then randomly sampled from across the replicates
for a given parent and bulked; for the majority of samples,
10 seeds were used per replicate. For root and shoot sam-
ples, seeds were surface sterilized and germinated on wet
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filter paper for 4–5 days at room temperature under grow
lamps. Germinated seedlings were then transplanted into
soil in pots and grown in a greenhouse under long-day con-
ditions (supplemental light via high-pressure sodium lamps)
for an additional 14 days at 30�C–33�C. Plants were re-
moved from pots, rinsed with water to remove soil, and
root and shoot tissue harvested separately and flash-frozen
in liquid nitrogen. Samples were stored at –80�C until RNA
extraction. Equal weights of shoots and roots were sampled
from across the replicates for a given parent and bulked.
Total RNA was extracted and sequenced, and raw reads
processed and aligned, as previously described with no mod-
ifications (Diepenbrock et al., 2017). In the present study,
RNA-seq reads from Diepenbrock et al. (2017) were directly
downloaded from the National Center for Biotechnology
Information Sequence Read Archive (BioProject
PRJNA174231) and processed using the same pipeline as de-
scribed in Hoopes et al. (2018). In brief, read quality was
assessed using FASTQC (https://www.bioinformatics.babra
ham.ac.uk/projects/fastqc/) and MultiQC (Ewels et al., 2016)
and then cleaned using Cutadapt (Martin, 2011) to remove
adaptors and low-quality sequences, aligned to AGPv4 of
B73 using TopHat2 (Kim et al., 2013) with the parameters -i
5 -I 60000 –library-type fr-unstranded, and expression abun-
dances determined using Cufflinks (Trapnell et al., 2012) in
the unstranded mode with a maximum intron length of 60
kb and the AGPv4 annotation.

FPKM filtering
The gene set was filtered (as in Diepenbrock et al., 2017)
such that at least one of the kernel developmental samples
in at least one sampled founder line had an FPKM greater
than 1.0; a total of 30,121 genes remained upon filtering
with this criterion. Expression data for genes passing the
specified threshold were transformed according to
log2(FPKM + 1), where the constant of 1 was added to al-
low the transformation of “0” values. These log2-transformed
values are referred to as “gene expression levels”
(Supplemental Data Set S8).

Triangulation analysis
The JL support intervals from two or more individual-trait
models that were physical overlapping were merged to
form common support intervals, as in Diepenbrock et al.
(2017). Physically distinct support intervals detected for a
single trait were also retained. Triangulation analyses were
conducted as in Diepenbrock et al. (2017), based on all
pairwise Pearson correlations between trait JL-QTL effect
estimates; marker genotype state for each significant
GWAS marker in the interval for the respective trait(s);
and log2-transformed expression values of genes within ±
100 kb of any of these significant GWAS markers. The
search space of 100 kb was selected based on LD decay
(Supplemental Figure S4). For those correlations involving
one of the five traits with a negative optimal lambda for
the Box–Cox transformation (i.e. an inverse power transfor-
mation was applied for these traits), the sign of the

correlation was reversed in graphical and tabular represen-
tations (Figure 3 and Supplemental Figure S3 for master
gene summaries, Supplemental Figure S2 and Supplemental
Data Set S6 for pleiotropy) to represent the true direction-
ality of the relationship between traits.

Epistasis
For the peak markers in the final JL model for each trait,
each possible additive � additive pairwise interaction was
individually tested for significance in a model containing all
marker main effects as in Diepenbrock et al. (2017). This
procedure was conducted for the 25 families. The model en-
try thresholds for these interaction terms was determined
by modeling 1,000 null permutations of transformed trait
BLUEs with only additive terms in the model and selecting
the P-value approximating a Type I error rate at a = 0.05.
Final epistatic models were then fit with all marker main
effects and any significant interactions. PVE was calculated
as described above, except that pairwise genotype scores
were collapsed into three classes for interaction terms as
previously described (Diepenbrock et al., 2017). Significant
interactions were graphically depicted using the Circos
software package (Krzywinski et al., 2009; Supplemental
Figure S5).

Pleiotropy
Pleiotropy was assessed as previously described (Buckler et al.,
2009), by applying the JL QTL model for each trait to every
other trait. Pearson correlations between the allelic effect esti-
mates for the original trait and the trait to which its model
was applied were evaluated for significance at a = 0.01 after
FDR correction via the Benjamini–Hochberg method.
Significant pleiotropic relationships were visualized using the
network R package (Butts, 2008, 2015; Supplemental Figure
S2). Pleiotropy was also examined within each common sup-
port interval (Supplemental File S1) to validate the merging
of individual-trait intervals, a step conducted in previous
NAM JL analyses (Tian et al., 2011). In this QTL-level analysis,
each peak JL marker within the interval was fit for every
other trait that had a peak JL marker in the interval.

LD analysis
The same imputed genotypic data set of 26.9 million segre-
gating markers used in JL-GWAS was used to estimate LD.
Specifically, pairwise LD of each significant GWAS marker
with all other markers within ±250 kb was estimated using
custom Python and R scripts as previously described (Weir,
1996; Wallace et al., 2014; Diepenbrock et al., 2017). A null
distribution was generated by performing the same estima-
tion for 50,000 markers selected at random. LD was exam-
ined in both v2 and uplifted v4 coordinates; in the latter
case, the small minority of flanking markers that moved out-
side of the ±250-kb region upon uplifting were dropped
from the v4 analysis for that given marker.
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Variant annotation
Variant annotation was conducted on the GWAS variants in
this study; i.e. genetic markers that were significant for one
or more traits in GWAS and that were within ±100 kb of an
identified gene. Existing GERP scores in maize were down-
loaded from the publicly available data sets of Ramstein et
al., (2020) and Kistler et al. (2018). GERP scores [along with
minor allele frequencies, from Ramstein et al., (2020)] were
extracted for the GWAS variants in this study based on their
AGP_v4 chromosome and position. Annotation of genetic
variants and prediction of effects was conducted in SnpEff
(Cingolani et al., 2012). First, the input files used in GWAS
were converted to VCFs in TASSEL 5.2.65 (Bradbury et al.,
2007). The GWAS variants in this study were then anno-
tated using AGP_v4 coordinates in SnpEff 5.0 (build 2020-
08-09) (Cingolani et al., 2012), using the following command
(and Ensembl Genome release 46; ftp://ftp.ensemblgenomes.
org/pub/release-46): java -Xmx8g -jar snpEff.jar Zea_mays
[infile].vcf 4 [outfile]_Annot.vcf.

Accession numbers
The genes that were identified in this study are listed in
Figure 2. Their accession numbers (in the form of
RefGen_v4 gene IDs) are as available in MaizeGDB (www.
maizegdb.org; Portwood et al., 2019): Zm00001d027936,
Zm00001d029822, Zm00001d001909, Zm00001d003512/
Zm00001d003513, Zm00001d036345, Zm00001d019060,
Zm00001d011210, Zm00001d045383, Zm00001d048373,
Zm00001d048469, and Zm00001d026056. Sequence data
from the maize HapMap v1 and v2 projects (Gore et al.,
2009; Chia et al., 2012, respectively) are available in the
NCBI Short Read Archive (and at www.panzea.org); acces-
sion numbers are SRP001145 (for HapMap v1) and
SRA051245 (HapMap v2). Expression data are available via
the MSU Maize Genomics Resource (Hoopes et al., 2018;
http://maize.plantbiology.msu.edu/index.shtml) via a
JBROWSE installation and as a downloadable expression
matrix. The data reported herein are made available in the
supplemental data sets, and scripts are available on GitHub
(https://github.com/GoreLab/Vitamaize_NAM_GWAS_
LabVersion/Carot.git).

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Pairwise phenotypic correlations
between untransformed BLUEs of eight carotenoid grain
traits.

Supplemental Figure S2. Pleiotropy of 117 QTL identified
in JL analysis for eight grain carotenoid traits in the US
maize NAM population.

Supplemental Figure S3. Master summaries for the
remaining genes identified in this study.

Supplemental Figure S4. LD estimates between GWAS
variants in the US maize NAM population.

Supplemental Figure S5. Genome-wide distribution of
carotenoid JL-QTL and their pairwise epistatic interactions
in the 25 US NAM families.

Supplemental Figure S6. Relative explanation of pheno-
typic variance for eight carotenoid grain traits by JL-QTL in
which a gene was identified, or that remain unresolved.

Supplemental Table S1. Percent PVE by unresolved QTL
(JL-QTL).

Supplemental Table S2. Relationship between ccd1 copy
number and JL-QTL allelic effect estimates for the NAM JL-
QTL containing wc1.

Supplemental Table S3. Lambda values used in Box–Cox
transformation and JL and GWAS entry thresholds deter-
mined from permutations for each trait.

Supplemental Data Set S1. Genomic information for the
59 a priori candidate genes.

Supplemental Data Set S2. BLUEs for the US maize
NAM population used in the present study. Transformed
BLUEs are presented in Supplemental Data Set S2a, and
untransformed BLUEs are presented in Supplemental Data
Set S2b (Supports Table 1).

Supplemental Data Set S3. Summary of JL-QTL and asso-
ciated GWAS signals for eight carotenoid grain traits evalu-
ated in the US maize NAM population.

Supplemental Data Set S4. Final JL models for the eight
grain carotenoid traits evaluated in the US maize NAM
population.

Supplemental Data Set S5. Complete list of GWAS results.
Supplemental Data Set S6. Summary of pleiotropy analyses.
Supplemental Data Set S7. Summary of JL-QTL allelic ef-

fect estimates for eight carotenoid traits evaluated in the US
maize NAM population.

Supplemental Data Set S8. Tissue description and num-
ber of sequences for RNA samples used in this study.

Supplemental Data Set S9. GERP and SnpEff results for
all GWAS variants within ±100 kb of 1 of the 11 genes iden-
tified in the present study.

Supplemental Data Set S10. Summary of JL-QTL within
the 14 nonwhite-endosperm families of the US maize NAM
population for eight grain carotenoid traits.

Supplemental Data Set S11. Summary of JL-QTL allelic
effect estimates for eight carotenoid traits evaluated within
the 14 nonwhite-endosperm families of the US maize NAM
population.

Supplemental Data Set S12. Significant pairwise interac-
tion terms between JL-QTL peak markers for eight caroten-
oid grain traits evaluated in the 25 families of the US maize
nested associated mapping (NAM) population.

Supplemental File S1. Pleiotropy for eight maize grain ca-
rotenoid traits within each of the 11 US NAM JL-QTL in
which an underlying gene was identified in this study.
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