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Abstract
Accessible chromatin regions are critical components of gene regulation but

modeling them directly from sequence remains challenging, especially within plants,

whose mechanisms of chromatin remodeling are less understood than in animals. We

trained an existing deep-learning architecture, DanQ, on data from 12 angiosperm

species to predict the chromatin accessibility in leaf of sequence windows within and

across species. We also trained DanQ on DNA methylation data from 10 angiosperms

because unmethylated regions have been shown to overlap significantly with ACRs

in some plants. The across-species models have comparable or even superior perfor-

mance to a model trained within species, suggesting strong conservation of chromatin

mechanisms across angiosperms. Testing a maize (Zea mays L.) held-out model on a

multi-tissue chromatin accessibility panel revealed our models are best at predict-

ing constitutively accessible chromatin regions, with diminishing performance as

cell-type specificity increases. Using a combination of interpretation methods, we

ranked JASPAR motifs by their importance to each model and saw that the TCP and

AP2/ERF transcription factor (TF) families consistently ranked highly. We embedded

the top three JASPAR motifs for each model at all possible positions on both strands

in our sequence window and observed position- and strand-specific patterns in their

importance to the model. With our publicly available across-species ‘a2z’ model it is

now feasible to predict the chromatin accessibility and methylation landscape of any

angiosperm genome.

Abbreviations: ACR, accessible chromatin region; ATAC-seq, assay for transposase-accessible chromatin with sequencing; auPR, area under the
precision-recall curve; CNN, convolutional neural network; GIA, global importance analysis; scATAC, single-cell ATAC; TF, transcription factor.
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1 INTRODUCTION

Accessible chromatin regions (ACRs) are known to play a
critical role in eukaryotic gene regulation but their compre-
hensive identification in plants remains a challenge (Marand
et al., 2017; Weber et al., 2016). Current methods to
assay chromatin accessibility are highly environment specific
and relatively expensive compared with DNA sequencing,
limiting the number of species or conditions that can be inves-
tigated. Assaying chromatin accessibility in plants comes with
additional unique challenges: the cell wall makes plant nuclei
hard to isolate and many active transposon families shuf-
fle, create, and destroy regulatory regions over time (Hirsch
& Springer, 2017). Regions that lack DNA methylation are
known to be stable over developmental time and overlap sig-
nificantly with ACRs in plants with larger genomes (Crisp
et al., 2020), suggesting they may contain a superset of ACRs
across cell types. Computational models capable of predicting
chromatin accessibility and methylation state directly from
DNA sequence would enable a wide range of previously
intractable studies on gene regulation across evolutionary
time as well as estimation of noncoding variant effects for
use in contexts such as breeding. Plants also provide an excel-
lent system to study the genetic basis of adaptation (Anderson
et al., 2011). Now that it is feasible to assemble genomes of
thousands of species, regulatory regions that control adapta-
tion can be identified, providing valuable insight on how to
breed crops resilient to climate change. Recent advances in
machine learning, particularly deep learning, have catalyzed
a vast number of applications to biological prediction includ-
ing RNA abundance (Agarwal & Shendure, 2020; Avsec,
Agarwal, et al., 2021; Washburn et al., 2019), chromatin state
(Kelley, 2020; Quang & Xie, 2016; Zhou & Troyanskaya,
2015), and transcription factor (TF) binding (Tu et al., 2020)
directly from DNA sequence. Many of these models have so
far only been trained within a single species to predict within
the same species, usually using held-out chromosomes as a
test set to control for sequence relatedness.

At a high level, plant chromatin has characteristics similar
to animal chromatin: chromatin is organized into hierarchi-
cal compartments, distal regulatory regions are colocalized to
genes through chromatin looping, and various histone mod-
ifications signal a wide variety of local chromatin states.
However, the exact mechanisms driving chromatin accessibil-
ity are known to be quite different in terms of specific histone
modifications (Lu et al., 2019), pioneer factors (Yamaguchi,
2021), and chromatin looping mechanisms (Doğan & Liu,
2018). Because of these differences, plant-specific chromatin
accessibility models are likely to be necessary.

We know that TF binding sites are strongly conserved
across evolutionary time (Chen et al., 2018; Tu et al., 2020)
and highly enriched in ACRs (Shlyueva et al., 2014). Certain
deep-learning model architectures, such as convolutional

Core Ideas
∙ Cross-species models of chromatin state from

sequence are comparable or superior to within-
species models.

∙ Model performance is highest on accessible
regions open in many tissues.

∙ Transcription factor motifs can be ranked by
importance to each species and chromatin state.

neural networks (CNNs), have already been shown effective
for predicting chromatin accessibility within species by
recognizing important motifs (Quang & Xie, 2016; Zhou &
Troyanskaya, 2015) and their spatial relationships (Avsec,
Weilert, et al., 2021). These CNN-based architectures can
accurately predict chromatin accessibility in humans (Liu
et al., 2017; Quang & Xie, 2016; Zhou & Troyanskaya, 2015)
as well as in plants (Shen et al., 2021; Zhao et al., 2021).
However, the vast majority of previous work has focused on
improving performance within species and across cell types
with little focus on across-species prediction (Kelley, 2020) or
prediction within unobserved species. Previous work (Chen
et al., 2018; Krützfeldt et al., 2020) has observed that CNNs
require much larger training data sets than earlier model
architectures to achieve equivalent or better performance. By
incorporating multiple species into the training data, we not
only increase the number of observations but also the total
evolutionary time between observations, which reduces con-
founding neutral variation within conserved sequences. For
the purposes of predicting regulatory regions in unobserved
plant species, training a model across species will be critical
to learn important motifs and syntax that are conserved across
longer evolutionary time periods. Therefore, we predicted that
previously published deep-learning architectures could work
well across species and make accurate chromatin accessibility
and methylation predictions in related unobserved species.

Here, we train DanQ (Quang & Xie, 2016) to predict
chromatin accessibility in leaf using assay for transposase-
accessible chromatin with sequencing (ATAC-seq) data from
12 angiosperm species (Lu et al., 2019), comparing the
performance of within-species models to across-species mod-
els. We also train DanQ to predict unmethylated regions
using methylation data from 10 angiosperm species includ-
ing five previously published grasses (Crisp et al., 2020).
Using a maize single-cell ATAC (scATAC) accessibility
atlas (Marand et al., 2021), we see that the accessibility
model has similar performance across cell types but is highly
variable across regions with different levels of cell-type
specificity. Using various interpretation methods designed
for CNNs, we compare and contrast which motifs were
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important across angiosperms for predicting chromatin acces-
sibility in leaves or methylation state. Our publicly available
pan-angiosperm chromatin state models are an important
stepping stone toward a better understanding of gene regula-
tion and adaptation.

2 MATERIALS AND METHODS

2.1 Software environment

The software environment for the experiments was man-
aged by conda (v4.10.3). Packages were downloaded from
the conda-forge (conda-forge Community, 2015) and bio-
conda (Grüning et al., 2018) channels. Software versions not
explicitly mentioned in the methods are defined in the conda
environment files in the companion code repository on Zen-
odo (Wrightsman et al., 2021). All of the code and data files
required to reproduce this manuscript, including all exper-
iments and figures, are available in the associated Zenodo
repository. The trained parameters for all models are also
available in the associated Zenodo repository.

2.2 Raw data

The angiosperm ATAC-seq peaks (Lu et al., 2019) were
downloaded from NCBI GEO accession GSE128434.
Genomes and annotations for Arabidopsis thaliana (L.)
Heynh. (TAIR10) (Lamesch et al., 2011), Eutrema salsug-
ineum (Pall.) Al-Shehbaz & Warwick (v1.0) (Yang et al.,
2013), common bean (Phaseolus vulgaris L.) (v1.0) (Schmutz
et al., 2014), soybean [Glycine max (L.) Merr.] (Wm82.a2.v1)
(Schmutz et al., 2010), Brachypodium distachyon (L.) Beauv.
(v3.0) (The International Brachypodium Initiative, 2010),
rice (Oryza sativa L.) (v7.0) (Ouyang et al., 2007), green
foxtail [Setaria viridis (L.) P. Beauv.] (v1.0) (Mamidi et al.,
2020), poplar (Populus trichocarpa Torr. & A. Gray) (v3.0)
(Tuskan et al., 2006), and sorghum [Sorghum bicolor (L.)
Moench] (v3.1 and v3.1.1) (McCormick et al., 2017) were
downloaded from Phytozome. Reference genomes and
annotations for maize (Zea mays L.) (AGPv4.38) (Jiao et al.,
2017) and barley (Hordeum vulgare L.) (IBSC_v2) (Mascher
et al., 2017) were downloaded from Ensembl Plants. The
genome and annotation for asparagus (Asparagus officinalis
L.) (v1.1) (Harkess et al., 2017) was downloaded from the
Asparagus Genome Project website. Unmethylated regions
for the grasses were downloaded from the supplemental infor-
mation of Crisp et al. (2020). For the unmethylated regions,
the maize AGPv4 genome and annotation was downloaded
from MaizeGDB. The grapevine (Vitis vinifera L.) genome
and annotation (Genoscope.12X) (The French–Italian Public
Consortium for Grapevine Genome Characterization, 2007)
were downloaded from the Genoscope website.

JASPAR 2020 Core Plantae (Fornes et al., 2019) motifs
and clusters were downloaded from the JASPAR website.
Maize AGPv4 RepeatMasker annotations were downloaded
from NCBI. Yeast and human cell-line GM12878 ATAC-
seq peaks (Schep et al., 2015) were downloaded from NCBI
GEO accession GSE66386. The yeast (sacCer3 April 2011)
(Mewes et al., 1997) and human (hg19) (Church et al., 2011)
genomes were downloaded from NCBI. Maize scATAC-seq
peaks (Marand et al., 2021) were downloaded from NCBI
GEO accession GSE155178. Genome files were indexed
using SAMtools (Danecek et al., 2021).

2.3 Unmethylated region calling on
non-grass species

Unmethylated region analysis on the nongrass species was
performed as per Crisp et al. (2020) using the data sum-
marized in Supplemental Table S14. Briefly, sequencing
reads were trimmed and quality checked using Trim galore!
(0.6.4_dev), powered by cutadapt (v1.18) (Martin, 2011)
and fastqc (v0.11.4). For all libraries, 20 bp were trimmed
from the 5′ ends of both R1 and R2 reads and aligned with
bsmap (v2.74) (Xi & Li, 2009) to the respective genomes
with the following parameters: -v 5 to allow five mismatches,
-r 0 to report only unique mapping pairs, and -p 1 and -q
20 to allow quality trimming to Q20. Output SAM files
were parsed with SAMtools (Li et al., 2009) fixsam, sorted,
and then indexed. Picard MarkDuplicates (Broad Institute,
2019) was used to remove duplicates, BamTools filter to
remove improperly paired reads, and bamUtil clipOverlap
(Jun et al., 2015) to trim overlapping reads so as to only
count cytosines once per sequenced molecule in a pair for
paired-end reads. The methylratio.py script from bsmap
was used to extract per-site methylation data summaries for
each context (CH/CHG/CHH) and reads were summarized
into nonoverlapping 100-bp windows tiling the genome.
Whole-genome bisulfite sequencing pipelines are available
on GitHub. To identify unmethylated regions, each 100-bp
tile of the genome was classified into one of six domains
or types—‘missing data’ (including ‘no data’ and ‘no
sites’), ‘high CHH/RdDM’, ‘Heterochromatin’, ‘CG only’,
‘Unmethylated’ or ‘intermediate’—in preferential order as
per Crisp et al. (2020).

2.4 Training data preprocessing

Interval manipulation was done using a combination of
the GNU coreutils, gawk, and bedtools (Quinlan & Hall,
2010). We created our positive observations by symmetrically
extending each accessible or unmethylated region from the
midpoint by half of the window size (300, 600, or 1000 bp).
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Our negative observations are randomly sampled from the
rest of the genome not covered by the union of the resized
positive observations and the original peaks. Observations
were labeled as ‘genic’ if more than half of the range over-
lapped with a gene annotation, as ‘proximal’ if not genic and
more than half of the range was within the proximal cutoff
(2 kb), and as ‘distal’ if neither genic nor proximal. Previ-
ous work (Krützfeldt et al., 2020; Wei & Dunbrack, 2013)
has shown that classifiers train best on balanced sets with an
equal number of positive and negative examples but should
be tested on the true class distribution to get an accurate per-
formance estimate. Therefore, for the across-species models,
we randomly sampled 6% of the observations and divided
them equally between a validation and test set. For the within-
species models, we randomly chose a hold-out chromosome
to follow best practice for reducing contamination of related
sequences between the training and test sets. As a heuristic
to select held-out chromosomes across genome assemblies of
varying contiguity, we randomly select within chromosomes
that are at least a million base pairs long and have more than
five positive observations. We then down sampled the remain-
ing observations to obtain a training set for the across-species
models with a balanced representation of species and target
class. The Ns were encoded as vectors with equal probability
assigned to each base as opposed to all zeros, which is another
common practice. Sequences were extracted using BioPython
(Cock et al., 2009) and pyfaidx (Shirley et al., 2015)

2.5 Training and evaluating models

The DanQ, Basset, CharPlant, and DeeperDeepSEA archi-
tectures were implemented and trained using Keras (Chollet,
2015) and TensorFlow (TensorFlow Developers, 2022). The
across-species models were tested on a given species and
trained on the remainder. Within-species models were tested
on a held-out chromosome and trained on the other chro-
mosomes. Because our ratio of accessible to inaccessible
chromatin observations is heavily unbalanced, we focus more
on the area under the precision-recall curve (auPR) to mea-
sure model performance as opposed to the more commonly
reported area under the receiver operating characteristic
curve. Performance metrics were measured using scikit-learn
(Pedregosa et al., 2011) and curves were plotted using mat-
plotlib (Hunter, 2007). Each model was trained three times to
obtain an estimate of variability in performance because of the
stochastic nature of the model variable initialization. For com-
parison between models, we used the first of the three trained
models.

The bag-of-k-mers model was trained and tested inde-
pendently on the within-species maize accessibility and
methylation training data using code adapted from Tu et al.
(2020) and compared with the within-species maize acces-
sibility and methylation models. The Basset, CharPlant, and

DeeperDeepSEA architectures were trained in the same man-
ner as the across-species DanQ configuration with the same
window size of 600 bp. For the two-step masked model
comparison, we masked the maize-held-out accessibility and
methylation model predictions to zero if more than half of
a region overlapped with an annotated repeat from Repeat-
Masker. We used pybedtools (Dale et al., 2011) to compute
overlaps between the test set and the repeats. We prepro-
cessed the yeast and human cell line ATAC-seq peaks in the
same manner as the angiosperm ATAC-seq peaks and used
the maize-held-out model to make predictions on the yeast
and human peaks.

The grasses accessibility model was trained and evalu-
ated in the same manner as the across-species angiosperm
accessibility model but restricted to only grass species. The
‘balDist’ accessibility model extended the training data bal-
ancing to distance class in addition to chromatin state,
meaning the training data had equal representation for each
species, distance class (genic, proximal, distal), and target
class (accessible or inaccessible or unmethylated or methy-
lated). The ‘exp’ accessibility model changed the activation
function on the convolutional layer from rectified linear unit
to exponential. The ‘all_v_AtZm’ accessibility model was
tested on Arabidopsis and maize and trained on the rest of the
angiosperm species. All trained model weights are available
on Zenodo (Wrightsman et al., 2021).

The dendrogram in Figure 1 was plotted using the Phylo
package of Biopython (Talevich et al., 2012).

2.6 Analysis of maize scATAC-seq data

The scATAC-seq peaks were preprocessed in the same man-
ner as the other peaks to generate uniform 600-bp regions.
Peaks were classified as open in a cell type if their counts per
million (a normalized depth measurement) value was greater
than log25 in that cell type, which would represent no reads
observed in that peak in that cell type, based on the methods
reported in Marand et al. (2021). Accessibility was predicted
using the maize-held-out model.

2.7 TF-MoDISco and k-mer occlusion

We ran TF-MoDISco (Shrikumar et al., 2020) with a slid-
ing window size of 15 bp, a flank size of 5 bp, and a target
seqlet false discovery rate of 0.15. For converting seqlets
to patterns, we set ‘trim_to_window_size’ to 15 bp, ‘ini-
tial_flank_to_add’ to 5 bp and specified a final minimum
cluster size of 60.

The k-mer-occlusion method involves masking (replacing
with Ns) a sliding k-mer across each sequence in a given
model’s test set. The difference between the model’s masked
and unmasked prediction is the k-mer’s ‘effect size’. We ran
the k-mer-occlusion method with a k-mer size of 10 bp on all
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F I G U R E 1 Performance of the across-species chromatin state classifiers. The top middle and top right show the mean and standard error (due
to variability in the stochastic model training process) of the area under the precision-recall curve (auPR) for the accessibility and methylation
models, respectively, per species for both the within- and across-species training configurations. The bottom left is the precision-recall curve across
all hold-out species for the across-species models split by distance class and chromatin feature. The bottom middle and bottom right are the
precision-recall curves for the across-species accessibility and methylation models, respectively, split by species. The auPR is shown in parentheses
within the figure legends

species and chromatin feature pairs. The top 5% accessibility-
or methylation-reducing k-mers per species and chromatin
feature were classified as ‘high-effect’ k-mers. We performed
an all-by-all global alignment of the high-effect k-mers per
species and chromatin feature using Biopython’s pairwise
aligner (Cock et al., 2009). Using the alignment distance
matrix, we clustered these high-effect k-mers into 100 rep-
resentative k-mers using k-medoids (Bauckhage, 2015). We
took the 100 medoid k-mers for each species and chromatin
feature pair and did another all-by-all global alignment to
create another distance matrix. The embedded k-mers coor-
dinates were created using the MDS function in scikit-learn’s
manifold package. High-effect k-mers were matched to JAS-
PAR 2020 CORE plantae motifs using FIMO (Grant et al.,
2011) and a q-value threshold of 0.05.

2.8 Positional global importance analysis

Global importance analysis (GIA) (Koo et al., 2021) measures
the average difference in model predictions from a sampled
background set of sequences to the same set with the sequence
embedded within them. We ran a positional GIA (pGIA) anal-
ysis for each species and chromatin feature pair by embedding

the consensus motifs of the 530 JASPAR 2020 CORE plan-
tae TFs in both orientations at each possible position within
1,000 generated 600-bp sequences. The 600-bp sequences
were generated using a profile model, where bases were sam-
pled at each position according to their relative frequency in
the model’s test set at that position. The GNU parallel (Tange,
2018) was used to speed up the pGIA analysis.

JASPAR motifs were ranked by their maximum global
importance across all positions. The TF families and classes
were obtained from the JASPAR API (v1).

2.9 Manuscript

This manuscript was formatted with Manubot (Himmelstein
et al., 2019).

3 RESULTS

3.1 Recurrent CNNs accurately model
chromatin state across species

To train a successful chromatin state classifier, we needed to
choose a window size that balanced genomic context with
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resolution. We tested a few different model configurations and
decided upon 600-bp windows because higher window sizes
showed diminishing returns on performance on our validation
set while decreasing our effective resolution (Supplemental
Figure S1). We preprocessed the ATAC-seq and unmethylated
peaks by taking the midpoint and symmetrically extending to
half the window size in both directions to obtain our posi-
tive observations. Negatives were sampled from the rest of the
genome. After preprocessing, we had 26,280 training regions
per species (315,360 total) for the across-species accessibil-
ity models and 35,652 training regions per species (356,520
total) for the methylation models split evenly between
classes.

As a baseline for comparison to previous, within-species,
chromatin state CNN models as well as our across-species
models, we trained within-species DanQ model configura-
tions for each of the angiosperm species in our data. We
also trained across-species model configurations each using
a different species as a test set. Generally, we observed
that a given across-species model has a comparable, if not
superior, auPR to the within-species model (Figure 1, top
middle and top right). Although the across-species acces-
sibility model auPR and areas under the receiver-operating
characteristic curve vary substantially (Figure 1, bottom mid-
dle and bottom right; Supplemental Figure S2), they are also
within the range of those observed in the original DanQ
and DeepSEA human models and superior to the bag-of-k-
mers model within maize (Supplemental Figure S3). We also
see that both within-species and across-species performance
decreases as genome size increases (Supplemental Figure S4).
When comparing the accessibility and methylation models,
we see the same trends in performance for each species. To
assess whether recurrent CNNs were a better architecture
choice for across-species accessibility models over standard
CNNs, we trained across-species accessibility configurations
of the Basset, CharPlant, and DeeperDeepSEA architectures.
We observed that DanQ was a superior architecture for across-
species accessibility modeling for almost all hold-out species
(Supplemental Figure S5).

To see if the models were more accurate in predicting
accessible or unmethylated regions near or within genes,
where these regions are known to be enriched, we looked at
the precision-recall curves across different distance classes
(genic, proximal, or distal). Observations were labeled as
genic if more than half of the range overlapped with a gene
annotation, as proximal if not genic and more than half of
the range was within the proximal cutoff (2 kb), and as distal
if neither genic nor proximal. We see that the across-species
models for both chromatin features perform the worst on
distal regions but show contrasting results on the genic
and proximal regions (Figure 1, bottom left). This could be
driven by the imbalanced distribution of regions between the

distance classes, with accessible regions biased toward the
proximal class and unmethylated regions toward the genic
class (Supplemental Figure S6). In particular, barley has
proportionally many more distal accessible and unmethylated
regions, which could explain the lower overall performance.
The across-species accessibility models are very precise when
calling inaccessible chromatin, with most of the errors being
false positives, particularly in distal regions (Supplemental
Figure S7). We see a much different result in the methy-
lation model, which shows only a slight bias toward false
positives.

To control for potential trans-driven transposon silencing,
we tested a two-step model that takes the predictions of the
a2z model and then masks them with zeros if they overlap
annotated transposons in maize. We see that these two-step
repeat-masked models do much better (ΔauPR 0.15 for acces-
sibility and 0.07 for methylation) than the naive models
(Supplemental Figure S8), suggesting a relatively straightfor-
ward way to reduce false positives in larger plant genomes
with more transposon-derived sequence.

Finally, we wanted to assess how far out in evolutionary
time the angiosperm model could work. We ran the model
against ATAC-seq data from yeast and a human GM12878
cell line (Schep et al., 2015). We see the plant-trained model
has some ability (Supplemental Figure S9) to predict chro-
matin accessibility in yeast (auPR 0.21), if not human cell
lines (auPR 0.02).

3.2 Leaf-trained models struggle to predict
cell-type-specific ACRs

Knowing the a2z models are capable of working across
species, we then asked how well the leaf-trained accessibility
models could work across cell types. We used scATAC-seq
data from six maize organs (Marand et al., 2021) as a mul-
tiple cell type test set for our single-tissue model. Using a
model trained on every species with ATAC-seq data except
maize, we predicted the accessibility of each scATAC peak
as well as negatives sampled from the rest of the genome.
Looking at the area under the threshold-recall curve, we see
that the model does better on peaks that are accessible across
many cell types, with a sharp decrease in peaks only accessi-
ble in five or fewer cell types, which are likely to be a mix of
false positives and highly cell-type-specific peaks (Figure 2,
left). The model does best on peaks that are generally open
across many cell types, which comprise the largest portion of
the training data (Supplemental Figure S10). This is clearly
shown when looking at the overall precision-recall curves in
the best (guard cell) and worst (trichoblast) cell types as well
as a union of all cell types. There is not a substantial difference
between the three (Figure 2, right).
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F I G U R E 2 Across-cell type performance of the maize accessibility model. The left plot shows the area under the threshold-recall curve for
each set of peaks grouped by the number of cell types they are accessible in. The right plot shows the precision-recall curves for peaks accessible in
the guard cell (best) and trichoblast (worst) cell types as well as peaks open in any cell type (union). The area under each curve is shown in
parentheses in the figure legend

3.3 Interpretation methods reveal
important conserved and species-specific motifs

Although chromatin state models that work across angios-
perms are a useful tool, we may be able to gain new insights
into chromatin biology by dissecting what motifs and higher-
order motif patterns the model is learning to use to separate
accessible from inaccessible chromatin or unmethylated from
methylated regions. We started with the attribution tool TF-
MoDISco to identify important motifs in the maize and
Arabidopsis test sets using their respective held-out models.
Although TF-MoDISco qualitatively identified many impor-
tant motifs (Supplemental Figure S11), most of them ranked
similarly by attribution score and therefore could not be quan-
titatively compared in terms of effect size or importance
relative to each other.

To obtain better estimates of sequence-effect size, we
developed a method that masks sliding windows across a set
of sequences and evaluates the change in the model predic-
tion, which we refer to as the k-mer occlusion method. Using
a k-mer size of 10 bp, representing a common estimate of
core binding site length, we ran a k-mer occlusion to get effect
sizes for each k-mer in the test set, binned k-mers into ‘high-
effect’ and ‘null-effect’, and then scanned them for matches
to JASPAR 2020 CORE plantae (Fornes et al., 2019) binding
motifs. For our accessibility models, we see that approxi-
mately 20–40% of high-effect k-mers match with JASPAR
motifs, whereas our methylation models generally seem to
have poor matching between JASPAR motifs and high-effect
k-mers (Supplemental Figure S12). To look at how similar

the high-effect k-mers were between chromatin features and
species, we used k-medoids to get a subset of representa-
tive k-mers and then visualized the distances between them
using multidimensional scaling. Surprisingly, the high-effect
k-mers across species and chromatin features cluster together,
with slight separation between methylation and accessibil-
ity (Figure 3, left). However, there is no separation between
species (Supplemental Figure S13) nor monocots and dicots
(Figure 3, middle, right) for either chromatin feature.

To understand which known biological motifs were being
recognized as important to the model, we used a recently
developed model interpretation method known as GIA (Koo
et al., 2021). First, we ranked JASPAR motifs by their maxi-
mum global importance across all positions for each model
(Table 1) and saw both species-specific and common TFs
across the models. One of the most remarkable observations
is that the top 10 motifs in the Arabidopsis model are all from
the TCP family. The maize accessibility model also ranked
TCP motifs in the top 10 but behind Dof-type motifs. The
Arabidopsis and maize methylation models rank the same two
motifs at the top and share mostly the same families between
the rest. Next, we looked at the positional effects of the top
three TFs across Arabidopsis accessibility (Figure 4, top left)
and methylation (bottom left) as well as maize accessibility
(top right) and methylation (bottom right). The most striking
feature is the sawtooth pattern seen across both species and
chromatin feature models; however, the cause of this pattern
is unclear. The Arabidopsis accessibility model shows a clear
bias toward the center of the accessible regions for the top
three TFs, whereas the other models are not as consistent.
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F I G U R E 3 Multidimensional scaling of the high-effect medoid k-mer distance matrix across all species and chromatin feature model
combinations. Each point is a high-effect k-mer in a given species and chromatin feature combination

T A B L E 1 Top 10 JASPAR motifs for four pan-angiosperm models ranked by max global importance across all possible embedding positions.
Transcription factor (TF) family or class (if family was not available) according to JASPAR is shown in parentheses under each TF

Rank

Accessibility Methylation
Arabidopsis thaliana Zea mays Arabidopsis thaliana Zea mays

1 TCP1 (TCP) AT5G66940 (Dof-type) ERF104 (AP2/ERF) ERF104 (AP2/ERF)

2 TCP14 (TCP) OBP3 (Dof-type) AT4G18450 (AP2/ERF) AT4G18450 (AP2/ERF)

3 At1g72010 (TCP) AT1G69570 (Dof-type) ERF9 (AP2/ERF) RAP211 (AP2/ERF)

4 TCP21 (TCP) OBP1 (Dof-type) BPC5 (BBR-BPC) BPC5 (BBR-BPC)

5 TCP19 (TCP) AT2G28810 (Dof-type) ERF2 (AP2/ERF) ERF9 (AP2/ERF)

6 TCP7 (TCP) AT5G02460 (Dof-type) LEP (AP2/ERF) ESE1 (AP2/ERF)

7 At2g45680 (TCP) TCP1 (TCP) BPC1 (BBR-BPC) AT5G66940 (Dof-type)

8 TCP20 (TCP) At1g72010 (TCP) ESE1 (AP2/ERF) BPC1 (BBR-BPC)

9 OJ1581_H09.2 (TCP) TCP21 (TCP) ERF10 (AP2/ERF) ERF2 (AP2/ERF)

10 TCP2 (TCP) BPC5 (BBR-BPC) BPC6 (BBR-BPC) LEP (AP2/ERF)

4 DISCUSSION

We have shown that recurrent CNNs, DanQ in particular,
are an effective architecture on which to base across-
species sequence to chromatin state models. By incorporating
sequence data from multiple species, we not only increase the
size of our training data set, a critical factor for deep-learning
models, but also reduce the amount of confounding neutral
variation around functional motifs. Being able to predict chro-
matin state across species also opens the door for studies of
regulatory regions in additional angiosperm species with only
genomic sequence data. Beyond angiosperms, the a2z model’s
predictive ability in yeast suggests it is capable of working
effectively across wide evolutionary timescales. Unsurpris-
ingly, we noticed that the performance across different peak
classes relates to their relative abundance in the training set.
Future work looking at ways to balance or weight observations
in rarer peak classes would likely improve the generalizabil-
ity of the models. This is particularly important for working
toward better across-tissue chromatin state models, where the
tissue-specific peaks are usually the minority in any given data

set, as well as with larger genomes, where distal peaks are
more prevalent.

Further, most sequence-based model architectures, includ-
ing DanQ, only take in cis sequence, which is known (Xiao &
Wagner, 2015) to account for only a portion of the variation
in local chromatin state. Model architectures that can effec-
tively incorporate trans factors, such as chromatin-remodeling
TFs on neighboring regulatory elements (Taberl et al., 2011)
or small RNA silencing (Ito, 2011), will likely surpass cur-
rent methods but their across-species applicability remains an
open question. By far, the most prevalent error of the acces-
sibility models in particular is calling false positives, which
may be due to lack of trans information. A portion of these
false positives may also be under called ATAC-seq peaks
that are open in very specific cell types, because the peaks
from Lu et al. (2019) were called with relatively conservative
thresholds.

Interpreting deep-learning models remains a challenge
but is an especially critical one to overcome. Here we
use occlusion- and perturbation-based methods instead of
gradient-based approaches like TF-MoDISco and saliency
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F I G U R E 4 Positional global importance analysis plots for Arabidopsis (left) and maize (right) accessibility (top) and methylation (bottom).
The solid and dotted lines represent the importance scores for the positive and negative strand, respectively. Only the top three JASPAR motifs
ranked by the maximum global importance across the sequence were plotted

maps to trade longer computational times for reduced noise
(Kim et al., 2019) in effect estimates. Particularly because
eukaryotic TF binding sites are known to be degenerate
(Stewart et al., 2012), point mutation effect sizes in regula-
tory sequences are likely to be small and harder to estimate
accurately with our limited data. The lack of separation
between clades and species in the multidimensional scaling
plots for each chromatin feature is not too surprising. The
across-species models must learn to prioritize motifs that are
generalizable across species and so potential species- or clade-
specific motifs are ignored. The sawtooth pattern, which is
stronger in some TFs than in others, could be a manifesta-
tion of the model learning a helical face bias for specific TF
binding. Further controls will be necessary to investigate that
hypothesis, as the pattern may also be an artifact of the maxi-
mum pooling or long short-term memory layers. Not all of the
pGIA results agree with current theory. For example, some
of the motifs have a noticeable strand bias, but enhancers
are known to operate in an orientation-independent (Arnold
et al., 2013) manner. Given some of them are relatively sim-
ple motifs, it is possible that these matches are surrogates
for important nonbinding motifs. We chose to rank JASPAR
motifs by maximum global importance across the sequence as
a rough estimate for importance to regulating the given chro-
matin feature state, though other methods of ranking could

be preferable depending on the use case. Because positive
observations are created by extending from the midpoint, the
effect of TFs that bind to the center of accessible or unmethy-
lated regions will be easier to estimate because they are more
aligned across the test set sequences. In contrast, TFs that bind
to the edges of accessible or unmethylated regions are not
aligned because the lengths of the true, unextended ATAC-seq
peaks are not equal.

The top 10 JASPAR motifs are very different between the
features but remarkably similar between the species within
each feature. Of the two known (Jin et al., 2021; Lai et al.,
2021; Tao et al., 2017) plant pioneer TFs (LEC1 and LEAFY),
only LEAFY is present in JASPAR but does not show up in the
top 10 motifs for any of the models. This is not unexpected,
as it is a floral TF, and our models are trained on leaf acces-
sible regions. The strong presence of the TCP family in the
highly ranked accessibility TFs is promising, because they
are known (Yang et al., 2020) to be involved in chromatin
remodeling. What role the Dof-type TFs play in accessibility
is still unclear because of the wide variety of roles they play
(Noguero et al., 2013). The shared top two motifs between the
methylation models have evidence that they are involved in
plant pathogen response (Bethke et al., 2009; Ou et al., 2011).
Knowing that plant immunity genes are among the most vari-
able (Van de Weyer et al., 2019), it would be interesting to see
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if these unmethylated regions are harboring a large library of
rapidly inducible resistance genes that remain mostly inacces-
sible until needed. With the high similarity in binding motifs
by definition within families, it is quite possible that some
highly ranked TFs are false positives because of association
with the few causal TFs in the same family. Although it is
useful to use JASPAR motifs as specific testable hypotheses,
there are only 530 motifs in the database, and with the low-
est estimates of angiosperm TF gene count starting at ∼1,500
(Lang et al., 2010), critical TFs may still be missing.

Moving forward, more focus is necessary on collecting
high-quality accessible regions across a variety of cell types
to train models that are capable of simultaneously gen-
eralizing across both tissues and species. Lessons learned
from successful across-species and across-tissue chromatin
state models could be applied to improve more task-specific
sequence models such as enhancer prediction (Min et al.,
2017) or promoter-enhancer contact prediction (Li et al.,
2019). With the release of highly accurate protein-folding
models, such as AlphaFold2 (Jumper et al., 2021), the miss-
ing species-specific TF binding motifs in any genome may
finally be feasible to estimate using simulated DNA docking
approaches. Now that many deep-learning-based approaches
borrowed from other fields (Avsec, Agarwal, et al., 2021; Tu
et al., 2020) have been shown to be successful in mapping
genomic sequence to a variety of cellular phenotypes, better
interpretation methods to assess what these black-box mod-
els are learning will be important to optimize toward more
biologically relevant architectures.
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