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ABSTRACT 20 

  Genomic applications such as genomic selection and genome-wide association 21 

have become increasingly common since the advent of genome sequencing.  The cost of 22 

sequencing has decreased in the past two decades, however genotyping costs are still 23 

prohibitive to gathering large datasets for these genomic applications, especially in non-model 24 

species where resources are less abundant.  Genotype imputation makes it possible to infer 25 

whole genome information from limited input data, making large sampling for genomic 26 

applications more feasible.  Imputation becomes increasingly difficult in heterozygous species 27 

where haplotypes must be phased.  The Practical Haplotype Graph is a recently developed tool 28 

that can accurately impute genotypes, using a reference panel of haplotypes.   We showcase 29 

the ability of the Practical Haplotype Graph to impute genomic information in the highly 30 

heterozygous crop cassava (Manihot esculenta).  Accurately phased haplotypes were sampled 31 

from runs of homozygosity across a diverse panel of individuals to populate PHG, which proved 32 

more accurate than relying on computational phasing methods.  The Practical Haplotype Graph 33 

achieved high imputation accuracy, using sparse skim-sequencing input, which translated to 34 

substantial genomic prediction accuracy in cross validation testing.  The Practical Haplotype 35 

Graph showed improved imputation accuracy, compared to a standard imputation tool Beagle, 36 

especially in predicting rare alleles.  37 

INTRODUCTION 38 

The past decade has seen an abundance of genomic sequence data produced 39 

for research and application in agricultural crops.  With these new technologies, comes 40 

questions on how to effectively implement them (Torkamaneh et al. 2018).  Two of the 41 

most common uses of genome-wide sequence data are genomic selection (GS) and 42 

genome-wide association studies (GWA).  While most GWAS attempt to locate distinct, 43 

causative regions of the genome, genomic selection incorporates all available markers 44 
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to predict plant traits (Meuwissen et al. 2001).  Genomic selection leverages a training 45 

set population that has both genotypic and phenotypic data to predict traits in a related 46 

germplasm with only genotypic data (Heffner et al. 2009).  This allows breeders to both 47 

increase accuracy in selecting traits with low heritability and accelerate the rate of 48 

selections by decreasing selection cycle time (Xu et al. 2020).   49 

While sequencing data has become increasingly common in agricultural 50 

applications, the financial cost remains a challenge to widespread implementation.  51 

Reduced representation marker systems have been produced to limit costs of 52 

performing genomic analyses (Romay 2018), all of which vary in marker density and 53 

depth, cost, and genotype confidence.  In scenarios with limited diversity, such as single 54 

breeding pools or post-bottleneck populations, individuals share large stretches of 55 

sequence.  The strong association between alleles in these blocks, or their linkage 56 

disequilibrium (LD), determines the number and distribution of genotype markers 57 

needed to explain the genetic variation in the population.  High density of markers 58 

becomes more important when performing analyses in populations where LD decays 59 

quickly as in species with high diversity or among unrelated individuals.  High marker 60 

density can also be beneficial to incorporate knowledge on previously studied loci 61 

across the genome.   62 

 To affordably obtain high density genotypes or to bridge information between 63 

different marker platforms it becomes necessary to impute missing genotypes from 64 

available genotype data.  Increasing the stability across genotyping platforms and 65 

reducing per-sample costs, becomes even more relevant in plant breeding scenarios, 66 

where many thousands of offspring are evaluated and changes in marker platform are 67 
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common.  Computational techniques to impute genome-wide information have been 68 

produced to bridge genotypic information from different marker panels and augment 69 

genotypic information from limited inputs (Yun et al. 2009).  Genomic imputation 70 

methods often rely on a related training set with high confidence genotypic information 71 

to then predict missing genotypes.  These methods have been shown to improve 72 

consistency and efficiency of analyses of both genome wide associations (Spencer et 73 

al. 2009) and genomic selection (Cleveland et al. 2011).   74 

Imputation is very common in genomic studies but is still plagued with barriers to 75 

high accuracy in many species.  Known limitations of imputation stem from LD, allele 76 

frequencies, and population structure of the training population (Alipour et al. 2019).  77 

These difficulties are further compounded when working with a highly heterozygous 78 

crop, where both copies of the genome need to be modeled (Fragoso et al. 2016; 79 

Nazzicari et al. 2016).  Heterozygosity introduces the challenge of phasing, the process 80 

assigning alleles to haplotypes, a challenge that is not limited to plants (Friedenberg 81 

and Meurs 2016).   Imputation accuracy has been shown to affect the accuracy of 82 

genomic prediction in multiple scenarios (Pimentel et al. 2015; Wang et al. 2016; Van 83 

Den Berg et al. 2017).  Additionally, when tracking causative variation through the 84 

genome, high accuracy in imputation is necessary to evaluate variation across the 85 

entire genome.  Highly accurate imputation methods are needed to increase the gains 86 

made by genomic selection by making genotyping cheaper, more accurate, and more 87 

consistent.  88 

It has been shown that rare variants contribute to the genetic load and overall 89 

performance of crops (Yang et al. 2017; Kremling et al. 2018; Kono et al. 2019), making 90 
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high imputation accuracy, especially for alleles at low frequency, desirable for plant 91 

genomics applications.  Diverse imputation tools exist and are often designed for 92 

different scenarios.  One of the more common tools Beagle (Browning et al. 2018), 93 

which was designed for application in humans, works by leveraging LD between 94 

variants to predict missing genotypes.  Beagle uses LD clustering to create an acyclic 95 

graph and a Hidden Markov model (HMM) to infer the most likely haplotype.  Another 96 

method EAGLE leverages stretches of identity by descent (IBD) to perform long range 97 

phasing (Loh et al. 2016).  In humans, where these imputation algorithms have been 98 

showcased, they have the advantage of large datasets with data from several 99 

thousands of individuals (Loh et al. 2016; Browning et al. 2018), while this is not often 100 

possible in many plant breeding scenarios.   101 

In maize, it’s been shown that Beagle has difficulty accurately imputing rare 102 

variants, while a haplotype library based method such as FILLIN can do so more easily 103 

(Swarts et al. 2015).  A recently developed method known as the Practical Haplotype 104 

Graph (PHG) was created to leverage known haplotypes in a graph structure to 105 

efficiently impute genotypes.  The PHG simplifies the genome to a set of distinct regions 106 

of the genome, for which it defines haplotypes.  These haplotypes are constructed from 107 

whole genome sequence data or genome assemblies and are used to construct a trellis 108 

graph, capturing the diversity of haplotypes at each range and the relationships 109 

between adjacent haplotype regions.  Sequence reads are then aligned to the graph 110 

and an HMM is applied to predict the most likely haplotypes.  By aligning reads to pan-111 

genome haplotypes, the PHG minimizes errors due to reference bias, poor alignment, 112 

and mis-called variants.  Utilizing a PHG methodology in plant and animal applications 113 
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can improve the quality and quantity of genotype data for use in breeding and mapping 114 

scenarios.   115 

Here we showcase the potential application of the PHG in imputation of 116 

heterozygous crops.  The PHG has already been shown to be an efficient tool for aiding 117 

imputation and genomic selection in breeding of the inbred cereal crop Sorghum 118 

(Jensen et al. 2020).  It has also been implemented to impute genotypes in highly 119 

diverse maize lines (Valdes Franco 2020).  To show the utility of the PHG in a 120 

heterozygous crop we must overcome two distinct challenges: obtaining phased 121 

haplotypes to populate the database and modeling both copies of the genome 122 

accurately.  Without an abundance of data, it is very difficult to obtain accurate phasing 123 

in a highly heterozygous species.  This study will explore these challenges by imputing 124 

haplotypes from low-coverage skim sequencing, while comparing results to Beagle’s 125 

performance.     126 

To investigate the construction and performance of the PHG in a heterozygous 127 

scenario, we created a PHG for cassava (Manihot esculenta), a root crop with high 128 

levels of heterozygosity reinforced by centuries of clonal propagation.  In this study we 129 

utilize sequence data from the previously published HapMapII in cassava (Ramu et al. 130 

2017), which includes WGS data for 241 cassava clones.  This data is used to produce 131 

a PHG in cassava and showcase its effectiveness in genomic imputation in a 132 

heterozygous crop.  We further validate these methods through genomic prediction and 133 

simulation.   134 

 135 

MATERIALS AND METHODS 136 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkab383/6423990 by C

ornell U
niversity Library user on 16 N

ovem
ber 2021



8 
 

 137 

Figure 1.  Imputation Methodology Flowchart.  Diagram of methods used for the 138 

building PHG databases and performing imputation evaluations. 139 

Haplotype Sampling 140 

 Genomic data was used from the second-generation Cassava Haplotype map 141 

consisting of 241 taxa, including both cultivated and wild germplasm (Ramu et al. 2017).  142 

Raw data is composed of short-read, whole genome sequence data from each taxon 143 

amounting to greater than 20X coverage on average.  The high depth of the sequence 144 

data is necessary to accurately distinguish between heterozygous and homozygous 145 

variants.  We used the cassava v6 reference genome assembly in this study, which 146 

contains 18 chromosome level scaffolds summing to ~500Mbp of the estimated genome 147 

size of 700Mbp.  Haplotype regions, termed here as reference ranges, were defined by 148 

genic regions with additional 1000bp flanking sequence resulting in ~32,000 reference 149 

ranges after merging overlapping ranges, with an average size of 4kbp.   150 
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 The detailed process of creating a PHG is outlined at 151 

“https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home” and has been 152 

described previously (Jensen et al. 2020; Valdes Franco 2020). Here, we outline the 153 

specific steps taken to create a PHG in the heterozygous crop cassava (Fig. 1).  The 154 

major hurdle to producing a haplotype graph in a heterozygous species is obtaining 155 

accurately phased haplotypes.  Because many of these cassava lines are cultivated 156 

taxa, we expected to find identical by descent (IBD) haplotypes brought about by 157 

generations of breeding within restricted breeding pools. These IBD segments provide 158 

confidently phased haplotypes as well as capturing their relationships to adjacent 159 

haplotypes (Fig. 2).  We identified and sampled these homozygous haplotypes which 160 

we inferred to represent IBD haplotypes.  This was done by measuring the number of 161 

heterozygous variants for each reference range in each taxon, then classifying those 162 

haplotypes as homozygous or not.  The threshold for haplotypes to be considered IBD 163 

was determined empirically to be 0.001 heterozygous SNPs per base pair 164 

(Supplemental Fig. 1), as de novo mutations or errors in variant calling may produce low 165 

levels of perceived heterozygosity.  This threshold was additionally validated by testing 166 
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imputation accuracy of the PHG.  167 

 168 

Figure 2. Haplotype view of the genome.  Top) Representation of reference ranges 169 

informed from genic regions from the reference genome.  Bottom) haplotypes 170 

sampled from runs of homozygosity for use in PHG with different colors 171 

representing separate haplotypes at a given region (i.e., ranges 1,2,5,6,7 are 172 

homozygous and haplotypes can be sampled). 173 

   174 

After haplotypes were sampled from IBD regions of the genome, they were 175 

loaded as GVCF files into a PHG database.  Similar haplotypes were then collapsed 176 

based on sequence similarity to produce a representative set of available haplotypes.  177 

Haplotypes are collapsed to make alignment more efficient, while retaining as much 178 

distinct haplotype information as possible.  Collapsing is performed using an 179 
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unweighted pair group method with arithmetic mean (upgma) tree from pairwise 180 

distance matrix from sequence variants to measure the similarity between haplotypes.  181 

Based on imputation accuracy tests, we chose a level of similarity (PHG parameter: 182 

maximum divergence) to collapse haplotypes of 0.001, corresponding to less than 1 in 183 

1000 nucleotide differences between haplotypes.  This level of collapsing maintains 184 

high accuracy while collapsing redundant haplotypes (Supplemental Fig. 2).  We then 185 

produced a pan-genome composed of consensus haplotypes representing the diversity 186 

of haplotypes.   187 

Predicting Haplotypes 188 

 Once we obtained a set of consensus haplotypes, we implemented an HMM to 189 

infer genome-wide haplotypes from low depth genotyping data.  Sparse genotype 190 

information was created by downsampling whole genome sequence data randomly 191 

using samtools to simulate skim sequencing.  We randomly sampled 20 taxa from the 192 

cultivated varieties within the population to serve as a test set for downstream analyses, 193 

while using the remaining 221 clones for haplotype sampling. To test different levels of 194 

sequencing depth, we down-sampled reads to amounts estimated to represent 0.1X, 195 

0.5X, 1X, 5X, and 10X single-end, whole genome sequence coverage.  Additionally, we 196 

tested imputation using available Genotype-By-Sequencing (GBS) data for these lines.   197 

These sampled sequences were aligned to the consensus haplotypes stored in 198 

the PHG to impute whole genome variants.  A trellis graph is formed with every 199 

reference range representing separate ranges and the consensus haplotypes as nodes 200 

at each of those ranges.  The most likely paths through the graph were then determined 201 

using an HMM Viterbi algorithm.  Because cassava is heterozygous and diploid, this 202 
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step produces the two most likely paths for each taxon.  The emission and transition 203 

probability parameters of the HMM are defined by the genomes of the reference 204 

population used to build the database.  The emission probabilities are calculated by 205 

considering the probability of two given haplotypes, given the aligned reads.  The 206 

transition probabilities are defined by the edges between haplotypes in the PHG.  207 

Due to the sparse sampling of IBD haplotypes from heterozygous taxa used to 208 

produce the PHG, the database lacked abundant transition information between 209 

adjacent reference ranges.  To compensate for this, we aligned WGS for all 241 taxa 210 

used to create the database and predicted most likely paths through the graph.  These 211 

paths were then used to augment the transition probabilities, without contributing any 212 

additional haplotypes.   213 

Beagle imputation 214 

 We compared our imputation accuracy results to the common genotype 215 

imputation tool Beagle (Browning et al. 2018).  Beagle was developed for the purpose of 216 

human data, but is a common tool used by many plant studies to impute missing 217 

genotypes.  Because Beagle v4 has the ability to incorporate genotype likelihoods 218 

based on read depth, we used it for the imputation of the low depth sequence when it 219 

improved accuracy, otherwise we utilized Beagle v5.  We used the same HapMapII data 220 

from the 241 clones to impute missing genotypes with Beagle.   221 

Genomic Prediction 222 

 We used 57 clones from a single breeding program, to reduce effects of 223 

population structure, to determine the impact of imputation errors on genomic prediction 224 

accuracy using cross validation.  Reads were downsampled and imputed as previously 225 
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described.  Three root traits were used for genomic cross validation: fresh root yield, 226 

root size, and root number.  Phenotypes for each clone were downloaded from 227 

CassavaBase.org, constituting 57 clones, spanning 23 years from 1996 to 2018, across 228 

13 locations in Africa.  Ten-fold cross validation was performed by randomly selecting 229 

10% of the clones to hold out and predict using the remaining clones as a training set.  230 

The correlation between predicted phenotype and the observed best linear unbiased 231 

estimate (BLUE) was used as the prediction accuracy.  We performed 50 replications as 232 

well as a single holdout prediction to measure genomic prediction accuracy.  A single 233 

step model was performed: 234 

𝒚̂ = 𝜇 + 𝐺𝑖 + 𝐵𝑗 + 𝑅𝑘 + 𝐿𝑙 + 𝑌𝑚 + 𝐺𝑖𝑋𝐿𝑙 + 𝐺𝑖𝑋𝑌𝑚  235 

𝐺𝑖 ̴ 𝑁(0, 𝐺𝜎𝐺
2), 𝐵𝑗 ̴ 𝑁(0, 𝐼𝜎𝐵

2), 𝑅𝑘 ̴ 𝑁(0, 𝐼𝜎𝑅
2), 𝐿𝑙 ̴ 𝑁(0, 𝐼𝜎𝑙

2), 𝑌𝑚 ̴ 𝑁(0, 𝐼𝜎𝑚
2 )  236 

Here, 𝒚̂ is the predicted trait and μ is the fixed effect of the overall mean.  Random 237 

effects were fitted as follows: G is genotype effect of the ith clone, B is the effect of the 238 

jth block, R is the effect of the kth replicate, L is the location of the lth location, Y is the 239 

effect of the mth year, GXL is the interactive effect of the ith clone and the lth location, 240 

and GXY is the interaction effect of the ith clone and the mth year.  This was performed 241 

using the mixed model tool Echidna (Gilmour 2019).  242 

Pre-phased Haplotype PHG 243 

 We investigated the viability of using computationally phased haplotypes to 244 

curate a PHG database rather than relying on IBD regions of the genome.  First we 245 

phased the variants from the 241 cassava clones using a combination of Beagle 246 

(Browning et al. 2018) and HAPCUT2 (Edge et al. 2017).  These variants were used to 247 

create a PHG to be tested against the IBD version of the PHG.  The second test utilized 248 
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Oxford Nanopore (ONP) long-read sequencing from 6 cassava clones within the HMII 249 

population.  High molecular weight DNA was extracted from young cassava leaves, 250 

selected for fragments 20-80 kbp long, and sequenced with MinION following the 251 

manufacturer recommendations. Variants were called using Guppy and their variants 252 

phased with WhatsHap (Schrinner et al. 2020).  These 6 clones were then used to 253 

populate another PHG, we will identify as the “ONP6 PHG”.  Larger reference ranges 254 

were divided into smaller regions to increase the probability of sampling correctly 255 

phased haplotypes.  Twenty clones with the highest relationship to the 6 taxa with ONP 256 

data were used as the test set for these tests.   257 

Imputation from Simulated Genotypes 258 

 259 
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Figure 3. Simulation Methodology Flowchart.  Diagram of simulation scheme 260 

showing how simulated offspring were generated and used to test imputation 261 

accuracy under ideal haplotype sampling scenarios.   262 

  A sample of 20 related individuals from the HapMapII population were selected 263 

to serve as parents for a simulated genotyping scenario.  The genomes were phased 264 

using Beagle and then used to populate a PHG database.  We then used these parents 265 

to simulate 5 generations of random mating given a population size of 100 (Fig. 3).  266 

Forward genetic simulations were completed using SLiM (Haller and Messer 2019).  267 

Artificial short read-sequencing was then simulated for these offspring using neat-268 

genreads (Stephens et al. 2016) at varied coverage levels.  Reads were then aligned 269 

using bwa used to call and impute variants using Sentieon (Kendig et al. 2019) and 270 

Beagle.  Reads were also aligned to the PHG formed from the original parents for 271 

imputation.  272 

RESULTS 273 

Haplotype Sampling 274 

To obtain phased haplotypes for the PHG we sampled haplotypes from 275 

homozygous regions of each clone.  Centuries of clonal propagation and reported 276 

inbreeding depression (de Freitas et al. 2016) suggest cassava germplasm would be 277 

highly heterozygous, however, we found that, on average, ~20% of all reference ranges 278 

from each taxon were homozygous.  This resulted in a high number of missing 279 

haplotypes in each taxon, but a high confidence in the phased haplotypes that were 280 

sampled.  Despite the variability in the number of homozygous samples by reference 281 

range, >90% of the reference ranges were homozygous in at least 10% of the HapMapII 282 
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population (Supplemental Fig. 3).  From these IBD haplotypes we were able to sample 283 

~50% of the segregating sites.  This proportion increased to 77% when considering 284 

sites with minor allele frequency above 5%, suggesting that many of the common 285 

variable sites have been sampled.   286 

Imputation and Genomic Prediction Accuracy  287 

 Because imputation accuracy is dependent on the relative allele frequency and 288 

phase of the allele being called, we classified genotype calls by allele frequency class: 289 

homozygous major (both alleles are identical and have >50% allele frequency in 290 

HapMapII), homozygous minor (both alleles are identical and have <50% allele 291 

frequency in HapMapII), and heterozygous (two different alleles are present).  In our 292 

analyses, imputation accuracy is defined as the ability of the imputation method to 293 

reconstitute genome-wide SNPs from the input data. We use the correlation between 294 

the predicted alleles and the true alleles (defined by HapMapII) as a metric to make the 295 

PHG and Beagle comparable, because the PHG utilizes reads and Beagle utilizes 296 

variants to make their predictions.   297 

 Imputation of skim sequence genotyping showed PHG methods had a large 298 

advantage over Beagle using low coverage sequence.  At a level of 1X coverage 299 

random sequencing, the PHG predicted allele calls with a correlation of R2=0.84, while 300 

the correlation between Beagle predicted alleles and the true calls was R2=0.69 (Fig. 4 301 

A).  At higher depths of coverage (>5X), the raw data provides ample information to 302 

distinguish between homozygous and heterozygous genotypes, allowing Beagle to 303 

determine the correct genotype.  The PHG, however, is able to distinguish between the 304 

available haplotypes at a coverage of 0.5X and adding additional sequence data does 305 
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not increase the accuracy, as there is no correlation between accuracy and coverage 306 

beyond 0.5X.   307 

The improved performance of the PHG is most noticeable in its accurate 308 

predictions of heterozygous and rare genotypes.  The PHG was able to impute 309 

genotypes with high accuracy regardless of allele class (Fig. 4B).  The PHG’s high 310 

accuracy at low allele frequencies for both homozygous (Fig. 4C) and heterozygous 311 

genotypes (Fig. 4D), display its ability to impute rare alleles. 312 

 313 

Figure 4. Imputation Accuracy from skim sequencing.  A) Displays correlation 314 

between imputed and true variants by imputing with the PHG and Beagle at 315 

different levels of skim sequencing. B) Displays concordance between true and 316 

imputed alleles at 1X coverage separated by alleles classes: minor, heterozygous, 317 

and major (circle radius is equal to the proportion of alleles in each class).  C) 318 

Imputation accuracy at 1X coverage is shown for homozygous genotypes 319 

separated by allele frequency of the true allele at that locus.  D) Imputation 320 
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accuracy at 1X coverage is shown for heterozygous genotypes separated by 321 

minor allele frequency at that locus. 322 

 In addition to skim sequence scenarios, we also tested imputation using available 323 

GBS sequence for 20 clones.  While skim sequence samples a random set of reads 324 

from across the genome, GBS is a replicable set of markers that a sparsely sampled 325 

across the genome.  Imputation tests showed similar, but somewhat reduced 326 

accuracies using the PHG compared to Beagle (Fig. 5A).  It is important to note 327 

however that the PHG still had improved accuracies in imputing heterozygous 328 

genotypes (Fig. 5C).   329 

 330 

Figure 5. Imputation Accuracy from GBS sequencing.  A) Displays concordance 331 

between true and imputed alleles separated by alleles classes (circle radius is 332 

equal to the proportion of alleles in each class) B) Imputation accuracy is shown 333 

for homozygous genotypes separated by allele frequency of the true allele at that 334 
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locus.  C) Imputation accuracy is shown for heterozygous genotypes separated 335 

by minor allele frequency at that locus. 336 

 The imputed genotypes from skim sequence were then utilized in a genomic 337 

prediction scheme consisting of 57 cassava clones (Supplemental Fig. 4) from a single 338 

breeding program.  Clones were selected from a single breeding program to minimize 339 

confounding factors such as population structure and ensured an adequate level of 340 

heritability to assess genomic prediction accuracy.  Ten-fold cross validations and leave-341 

one-out validation showed that imputation accuracy generally appeared to follow the 342 

trends in genomic prediction accuracy, for fresh root yield and root number, while no 343 

clear pattern was apparent for the root size trait (Fig. 6). 344 
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 345 

Figure 6 Genomic Prediction Cross Validation.  10-Fold cross validation (box) and 346 

single holdout cross validation (line) show genomic prediction accuracies of 3 347 
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root traits using different imputation methods at varied sequence depths. Single 348 

holdout cross validation using complete genotype dataset is shown (dashed line).  349 

 350 

Phased Haplotype PHG 351 

 We tested the viability of populating the PHG with haplotypes phased by other 352 

methods.  We compared the IBD method of sampling phased haplotypes to two 353 

methods of phasing variants.  The first method used Beagle and HAPCUT2 to phase 354 

the variants called from the HapMapII WGS data.  The second method utilized 6 355 

cassava clones with ONP long-read data.  The IBD and Pre-Phased methods of 356 

populating the cassava PHG produced almost identical accuracies (Fig. 7).  These 357 

results suggest that Beagle and HAPCUT could not accurately phase heterozygous 358 

haplotypes at this scale, and the accurate haplotypes are derived from IBD haplotypes.  359 

While the PHG was made from 6 clones with ONP data did perform as well as the other 360 

methods, it relied on a far narrower set of germplasm.  This suggests that accurate 361 

haplotypes were likely captured using this method but lacked adequate sampling to 362 

capture sufficient haplotypes. 363 

 364 
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  365 

Figure 7. Haplotype Phasing Methods in the PHG.  Imputation accuracy is shown 366 

for 3 different methods of populating a PHG. First the IBD PHG (red) was 367 

populated using homozygous haplotypes from the 241 HapMapII clones. Second, 368 

the Pre-Phased PHG (Purple) used Beagle and HPACUT2 to phase these same 369 

clones.  Third, the ONP6 PHG (Yellow) used ONP long-reads and WhatsHap to 370 

phase 6 related taxa to the test set.   371 

 372 

Imputation Simulation 373 

 Evident from the tests using haplotypes from IBD regions of the genome, 374 

sampling phased haplotypes is a difficult aspect of creating an effective PHG in a 375 

heterozygous species.  To explore the performance of the PHG in a scenario where one 376 

could aptly sample the diversity of haplotypes, we used simulated offspring from a set of 377 

20 phased genomes.  While phasing errors exist, we accepted these phases as truth for 378 

the simulation of offspring.  This ensured that all haplotypes present in the offspring 379 
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exist in the PHG database.  We found that the disparity in accuracies between PHG and 380 

Beagle at high sequence coverage disappeared in our simulation (Fig. 8), while the 381 

trend in Beagle accuracy was very similar to our empirical tests.  While the simulation 382 

does represent an ideal scenario, including a narrower set of germplasm, it highlights 383 

the performance of the PHG when accurately phased haplotypes are available.   384 

 385 

 386 

Figure 8 Imputation Accuracy with Simulated Genotypes.  A simulated scenario 387 

where 20 parents with full phased information are used to populate a PHG.  388 

Correlation between imputed and true variants by imputing with the PHG and 389 

Beagle at different levels of skim sequencing.   390 

 391 

 392 

 393 

DISCUSSION 394 
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 We have detailed a method of implementing a PHG for the heterozygous plant 395 

species cassava.  This PHG database utilizes phased haplotypes to predict missing 396 

genotypes from low depth input sequence.  Runs of homozygosity formed by IBD 397 

relationships proved to be a reliable method of sampling phased haplotypes given the 398 

available data (Fig. 7).  This method of obtaining haplotypes, while not able obtain the 399 

full diversity of alleles, captured 77% of common alleles and produced ample 400 

haplotypes for significant imputation accuracy at very low sequence depth (Fig. 4A).   401 

The high accuracy of the PHG demonstrates its potential as an imputation tool 402 

for use in heterozygous crops. The advantages of the PHG imputation methodology are 403 

especially evident in its accuracy at calling rare and heterozygous alleles (Fig 4C,4D).  404 

Furthermore, the observed weaker relationship between allele frequency and imputation 405 

accuracy, highlights its ability to predict rare alleles.  Across both simulated and 406 

empirical experiments, we found that the ability of the PHG to impute whole genome 407 

variants was consistent at or above 0.5X sequence coverage.  The haplotype-based 408 

representation of the genome enables this imputation methodology to overcome the 409 

logistical hurdles such as those produced by sequencing and assembly errors, repetitive 410 

sequences, and poor alignments.   411 

The plateau reached in imputation accuracy (Fig. 4A) using the PHG most likely 412 

indicates that we have not sufficiently sampled the diversity of possible haplotypes.  At 413 

sequence coverages of 5X and higher, the raw data can produce the true genotypes 414 

and little imputation of missing genotypes is occurring.  The PHG imputation is limited to 415 

predicting haplotypes that are already present in the database, while Beagle can rely on 416 

the genotypes called from the high depth (>1X) raw sequence, meaning that there is 417 
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much fewer missing data for Beagle to impute.  This scenario of high depth sequence is 418 

useful to diagnose challenges in imputation, however it does not correlate to many real 419 

applications.  The disparity between the PHG and Beagle at these high coverages 420 

points to the presence of missing haplotypes in the database, rather than any disparity 421 

in performance.   422 

The hypothesis of missing haplotypes limiting imputation accuracy is supported 423 

by a visible relationship between homozygous incidence in our population and reference 424 

range imputation accuracy (Supplemental Fig. 5), suggesting that those ranges with 425 

poor imputation accuracy were not amply sampled.  The length and abundance of the 426 

IBD runs of homozygosity in our dataset likely determine the ability of the HMM to 427 

accurately predict haplotypes.  There may be many factors that affect the prevalence of 428 

IBD haplotypes including recessive deleterious effects, populations size, population 429 

diversity, and heterozygosity.  We saw that the disparity in imputation accuracy was 430 

remedied under simulation, where all possible haplotypes were sampled in the 431 

database (Fig. 8).  These results suggest that, although an already powerful tool, the 432 

PHG achieves maximum performance with sufficient sampling of available haplotypes. 433 

Currently the performance using GBS data appears to be similar between the 434 

PHG and Beagle (Fig. 5).  Imputation from reduced representation genotyping such as 435 

GBS is challenging due to the sparse sampling across the genome and varied levels of 436 

sequence quality.  Excellent imputation accuracy in inbred crops Sorghum (Jensen et 437 

al. 2020) and Maize (Valdes Franco 2020) using these genotyping methods highlights 438 

the potential benefits of the PHG in these scenarios.   Because reduced representation 439 

genotyping methods are likely the most commonly implemented, current efforts are 440 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkab383/6423990 by C

ornell U
niversity Library user on 16 N

ovem
ber 2021



26 
 

being made to improve heterozygous imputation using these technologies.  We expect 441 

improved haplotype sampling and phasing to improve imputation accuracy for these 442 

genotyping platforms.  Further haplotype sampling paired with developments in the 443 

PHG imputation methodology will likely improve imputation accuracy from these 444 

genotyping methods.   445 

While the imputation accuracy of the PHG is limited based on the haplotype 446 

sampling, its high accuracy with low levels of input sequence highlights its potential for 447 

genomic applications, where sparse genotyping is common.  We showed that this is 448 

true regarding genomic prediction by performing cross-validations with the imputed 449 

genotypes (Fig. 3).  The genomic prediction was still limited by imputation accuracy, but 450 

by enabling higher accuracy we can achieve more reliable predictions (Pimentel et al. 451 

2015; Wang et al. 2016; Van Den Berg et al. 2017).   452 

With increased imputation accuracy from more limited genotyping inputs, a 453 

breeding program may be able to afford to cross and genotype more offspring, enabling 454 

them to increase selection pressure across their breeding pool.  Similarly, imputation to 455 

genome-wide scale can bridge gaps between different data sets containing information 456 

on different marker panels, enabling the use of larger datasets for prediction.  Accurate 457 

imputation could also enable breeders to utilize genomic prediction models that 458 

incorporate more prior functional information on genome-wide variant effects into 459 

predictions, using methods such as GFBLUP (Fang et al. 2017) or BayesR (MacLeod et 460 

al. 2016; Van Den Berg et al. 2017).  These possible applications of imputation have the 461 

potential to increase total genetic gain made by breeding programs. 462 
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 We show that while computational methods might not be able to solve haplotype 463 

phasing with short-read data, long-read sequencing may be able to overcome that 464 

issue.  The Pre-Phased PHG produced similar accuracies to the IBD method, 465 

suggesting the additional haplotypes added by phasing why heterozygous alleles using 466 

Beagle and HAPCUT were not accurate over long distances.   While limited in scope, 467 

the ability of the PHG created from 6 clones with ONP data suggests the potential 468 

application of long reads for obtaining phased haplotypes.  One could envision a 469 

breeding scenario in which parents are sequenced and phased using long-reads and 470 

offspring are predicted from minimal genotyping input using the PHG.  Then every few 471 

generations shallow WGS can be used to update the PHG and compensate for 472 

changing LD structures.   473 

Applying the PHG to cassava and other heterozygous crops will depend on the 474 

ability to sample phased haplotypes within the given population.  We’ve shown that 475 

utilizing high depth WGS data and IBD regions of the genome can be used to reliably 476 

sample many phased haplotypes, and that the resulting PHG can impute with high 477 

accuracy from low depth sequence.  This method of sampling haplotypes will be highly 478 

dependent on the diversity and heterozygosity of the species and population for any 479 

given application.  Other necessary considerations for the decision to use the PHG 480 

include genome size, reference genome quality, training data availability, species 481 

ploidy.  In applications where imputation is commonly implemented, training data that 482 

can be used to construct a PHG may already be available.  Our long-read data results 483 

show the potential for more easily capturing phased haplotypes as these technologies 484 

become more available.  Using genome assemblies produced from long-reads as inputs 485 
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to the PHG has been shown to be very effective in Maize, while this method has not 486 

been implemented in outbred species.  The potential for the PHG as a tool in 487 

heterozygous crops has been shown here, while the specific methods to produce the 488 

phased haplotypes will have to be designed around the target species and scenario. 489 

CONCLUSION 490 

 The PHG is a method to reduce a genome to a set of haplotypes.  We have 491 

shown that this method can be used to predict whole genome haplotypes in a 492 

heterozygous species from sparse genotyping information.  Its high accuracy, especially 493 

in rare alleles, at very low depths of skim sequencing makes it a potentially powerful 494 

imputation tool.  Continued work in populating the PHG database with confidently 495 

phased haplotypes will lead to a more consistent prediction model across varied 496 

genotyping methods. 497 

DATA AVAILABILITY 498 

Supplementary files and scripts used for the production and testing of the cassava PHG 499 

can be found at https://bitbucket.org/bucklerlab/p_cassava_phg.  Genotype and 500 

phenotype data from HapMapII (Ramu et al. 2017) was downloaded from 501 

cassavabase.org.  Support and methods for practical haplotype graph implementation 502 

can also be found at https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home.  503 

Raw Oxford nanopore sequence data for this project is available at NCBI BioProject ID 504 

PRJNA589272. 505 
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