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Abstract 13 

Circadian entrainment and external cues can cause gene transcript abundance to oscillate 14 

throughout the day, and these patterns of diel transcript oscillation vary across genes and plant 15 

species. Less is known about within-species allelic variation for diel patterns of transcript 16 

oscillation, or about how regulatory sequence variation influences diel transcription patterns. In 17 

this study, we evaluated diel transcript abundance for 24 diverse maize inbred lines. We 18 

observed extensive natural variation in diel transcription patterns, with two-fold variation in the 19 

number of genes that oscillate over the course of the day. A convolutional neural network trained 20 

to predict oscillation from promoter sequence identified sequences previously reported as 21 

binding motifs for known circadian clock genes in other plant systems. Genes showing diel 22 

transcription patterns that cosegregate with promoter sequence haplotypes are enriched for 23 
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associations with photoperiod sensitivity and may have been indirect targets of selection as 24 

maize was adapted to longer day lengths at higher latitudes. These findings support the idea that 25 

cis-regulatory sequence variation influences patterns of gene expression, which in turn can have 26 

effects on phenotypic plasticity and local adaptation. 27 

 28 

Introduction 29 

Because most plants rely on sunlight for energy, they need to entrain their biological 30 

processes to the rhythms of the sun. Plant growth, development, physiology, metabolism, and 31 

immunity are all governed by diel cues and the internal circadian clock(Lu et al. 2017), including 32 

temporal patterns of transcription for about one third of genes(Ferrari et al. 2019). The number 33 

and types of genes showing diel patterns of transcription vary across species in Archaeplastida, 34 

but core components of the circadian clock are conserved across green plants(Ferrari et al. 2019; 35 

Michael 2022; Petersen et al. 2022). 36 

Despite high conservation of core circadian regulators, plant species have adapted to 37 

environments that vary wildly in their diurnal conditions, showing differences in aspects such as 38 

day length, light availability, temperature fluctuation, and pathogen pressure. These same 39 

conserved circadian regulators underpin molecular processes for circadian-regulated metabolic 40 

products that differentiate species from each other. Some of the diversity in form and function 41 

related to circadian processes can be attributed to genetic diversity in circadian genes, as 42 

previously shown in Arabidopsis(Michael et al. 2003) soybean(Wang et al. 2022) and 43 

maize(Hung et al. 2012b), but rewiring of gene interactions by evolution of transcription factor 44 

binding sites (TFBS) or chromatin accessibility are other, less explored ways that circadian 45 

regulation may have diversified among plant species. 46 
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Transcription factors (TFs) tend to evolve slowly and be conserved at both the sequence and 47 

functional level(Lambert et al. 2018; Tu et al. 2020). Their binding sites, on the order of ~10bp 48 

in length(Stewart et al. 2012), experience much faster rates of evolution(Stone and Wray 2001; 49 

Weirauch and Hughes 2010; Lambert et al. 2018). The fact that TFBS evolve much faster than 50 

their cognate TFs makes TFBS evolution a strong possible explanation for the observed 51 

variability in diel gene expression patterns between species, despite a conserved core circadian 52 

network. In addition to between-species variability, differential activity of TFBSs may contribute 53 

to within-species diversity for diel gene expression. To date, many studies of diel or circadian 54 

gene expression patterns in plants have focused on a representative variety, mutant lines, or 55 

comparisons across species. The extent of within-species, natural allelic variation for diel gene 56 

expression patterns is less well characterized. 57 

Maize is morphologically and genetically diverse, and has adapted to a wide range of 58 

environments worldwide, including broad latitudinal adaptation. Maize was originally 59 

domesticated in the Balsas valley of Mexico under short day lengths of less than 13 60 

hours(Matsuoka et al. 2002; Piperno et al. 2009). Prior to European colonization, people living 61 

in the Americas moved maize to latitudes spanning from Chile to Canada(Sauer and Weatherwax 62 

1955; Crawford et al. 2006), necessitating selection for growth and reproduction under long day 63 

conditions with up to 16 hour days. Short-day-adapted material grown in long-day environments 64 

will exhibit delayed flowering or potentially not flower at all; temperate-adapted maize varieties 65 

must be photoperiod-insensitive in order to produce grain.  66 

Early flowering is a highly polygenic trait critical for adaptation to temperate environments 67 

at higher latitudes with longer days(Troyer and Hendrickson 2007; Buckler et al. 2009), whereas 68 

photoperiod sensitivity, while still polygenic, appears to be governed by fewer loci(Hung et al. 69 
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2012b). Genetic variation in the maize circadian clock gene ZmCCT, homolog of Ghd7 in rice 70 

and partially similar to CONSTANS in Arabidopsis, has been shown to contribute to photoperiod 71 

sensitivity, but adaptation to long days is polygenic and ZmCCT accounts for 9% of phenotypic 72 

variance for photoperiod sensitivity in the maize Nested Association Mapping population(Hung 73 

et al. 2012b). Adaptation to long days likely required selection on a standing variation at a large 74 

number of loci(Swarts et al. 2017), but few of those have been rigorously identified or 75 

characterized, and the mechanisms by which selection altered flowering time in maize are not 76 

well known. 77 

Here we describe natural allelic variation for diel patterns of transcript abundance among 24 78 

maize inbred lines. We find that transcription factor binding motifs previously identified in 79 

Arabidopsis are predictive of whether or not a gene shows cyclical diel patterns of transcript 80 

abundance in maize. In addition, promoter region haplotypes co-segregate with significantly 81 

different rhythms of diel transcript abundance for hundreds of genes among our 24 inbreds. 82 

Those genes are shown to be enriched for GWAS hits for flowering and photoperiod sensitivity 83 

traits, and in some populations, enriched for signals of selection to higher latitudes. We posit that 84 

during movement to higher latitudes, people selecting for adaptation to longer days modified 85 

circadian regulation networks. 86 

 87 

Results and Discussion 88 

Natural variation for diel transcriptome rhythmicity 89 

Twenty-four diverse inbred lines, a subset of the parents of the maize NAM population(Yu et 90 

al. 2008; Gage et al. 2020), were evaluated for transcript abundance every two hours for twenty-91 

four hours (Supplemental Data 1). To reduce reference bias, sequencing data from each inbred 92 
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were aligned to that inbred’s cognate genome assembly(Hufford et al. 2021). Each annotated 93 

gene in each inbred was evaluated for rhythmicity using diffCircadian(Ding et al. 2021), which 94 

uses a likelihood-based method to test whether diel transcriptomic data fit a sinusoidal function. 95 

This method is less likely to identify significant diel patterns of expression that are not 96 

sinusoidal, such as impulses, step changes, or sawtooth patterns.  97 

We found variability between inbred lines for the number of genes which display significant 98 

diel rhythmicity (likelihood ratio test p < 0.01), ranging from 3,345 (Ms71) to 6,730 (Il14H) 99 

(Figure 1A, Supplemental File 1). The two genotypes with the highest number of rhythmic 100 

genes, P39 and Il14H, are both sweet corn lines which are genetically distinct from the 101 

remainder of the NAM parent lines, adapted to northern latitudes, and flower quickly. The 102 

number of cycling transcripts in a given inbred was weakly but not significantly correlated with 103 

photoperiod sensitivity, flowering time, maturity at sample collection, leaf sampled, or 104 

sequencing depth (Supplemental Figure 1), supporting the possibility that this pattern may be due 105 

to genetic differences in diel gene regulation and not simply varying levels of adaptation to the 106 

northern field site (Aurora, NY) where this study was performed. 107 

Using a pangenome(Hufford et al. 2021) to establish homologous pan-genes, we found that 108 

pan-genes which display diel rhythmicity in at least one inbred are frequently core genes (ie, 109 

present in all inbreds), but are not necessarily rhythmic in all inbreds (Figure 1B). This finding 110 

indicates that standing variation for rhythmicity exists in otherwise conserved genes and could 111 

have been selected upon during breeding and adaptation to new environments. 112 
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 113 

Figure 1: (A) Number of genes showing significant (p<0.01) sinusoidal diel patterns of 114 
transcript abundance in each inbred maize line. (B) Pangenes that show diel cycling are most 115 
likely to be present in all 24 inbred lines, but are often cycling only in some inbreds.  116 

 117 

Predicting rhythmicity from promoter sequences 118 

Given that there is natural variation in diel transcription patterns, both among pan-genes and 119 

between alleles of pan-genes, we trained a convolutional neural network (CNN) to predict 120 

whether a given gene is likely to show a cyclical pattern of diel transcription (Supplemental Data 121 

2). Based on previous characterization of the plant circadian clock, we know that diel 122 

transcription is subject to temporal feedback loops involving a number of transcription factors 123 

(TFs), including CCA1, LHY, PRRs, and ELFs(Sanchez and Kay 2016). We predicted that the 124 

presence, absence, and interactions between the binding motifs for these TFs might be identified 125 

from the convolutional filters of our model. 126 

Among the motifs identified by our model (Supplemental Figure 2, Supplemental Data 3) 127 

was a strong representation of the Evening Element AAATATCT (Nagel et al. 2015). We also 128 

identified motifs related to other circadian TFs previously characterized in Arabidopsis, 129 

including the CONSTANS-responsive element CCACA (CORE2) (Gnesutta et al. 2017); the 130 
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TOC1 TCP Binding Site (TBS) binding site motif GGCCC(Gendron et al. 2012); the TOC1 GA 131 

element(Gendron et al. 2012); the E2F/DP binding motif GGCGG(Vandepoele et al. 2005) 132 

which controls elements of the cell cycle, a process coupled to the circadian clock(Torii et al. 133 

2022); and the Telo-box motif AAACCCT(Spensley et al. 2009; Gardiner et al. 2021). Though 134 

our model was able to identify known TF binding motifs, most of its predictive power is from 135 

predicting across pan-genes; it is limited in its ability to predict differences between pan-gene 136 

alleles.  137 

These results reinforce conserved aspects of the plant circadian clock(Khan et al. 2010; 138 

Ferrari et al. 2019) as well as results from previous studies which used machine learning to 139 

identify sequence motifs related to circadian expression in Arabidopsis(Gardiner et al. 2021). 140 

This provides evidence for the utility of transferring knowledge from fundamental biology 141 

findings in model species to inform understanding about molecular biology in crop plants, 142 

despite >100M years of evolutionary divergence. 143 

 144 

Co-segregation of promoter haplotypes and transcript rhythmicity 145 

Following the identification of the predictive motifs from our CNN, we hypothesized that 146 

sequence variation could be causing differing patterns of diel gene expression among alleles of a 147 

gene. For each pangene, we tested for an association between the haplotype sequence of each 148 

inbred’s promoter region and patterns of diel transcript abundance, identifying 489 pangenes 149 

with significant association between promoter haplotype and diel expression pattern (Figure 2). 150 

We refer to these genes from here onward as Differential Diel Regulation (DDR) candidates 151 

(Supplemental Files 2 and 3). 152 

 153 
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 154 

Figure 2: Example of a pangene (Zm00001eb017170; ortholog of Arabidopsis ROQH1) with 155 
differential diel regulation based on promoter haplotype. Thin lines show transcript abundance 156 
for a single inbred throughout the course of the day and are colored based on which haplotype 157 
the inbred has in the promoter region of the gene; thick lines show the median transcript 158 
abundance for individuals with each of two haplotypes. 159 

 160 

Function of DDR genes: 161 

Among the identified DDR genes are calmodulin2 (cal2; Zm00001eb128040), a calcium 162 

signaling gene previously reported as involved in flowering time and adaptation to higher 163 

altitudes(Li et al. 2016; Hu et al. 2022) and MADS-transcription factor 68 (mads68; 164 

Zm00001eb006480), an ortholog of rice mads47 implicated in floral development, 165 

brassinosteroid signaling, and in maize, endosperm development(Duan et al. 2006; Fornara et al. 166 

2008; Qiao et al. 2016).  167 

KEGG pathway analysis of DDR genes reveals that they are enriched for a number of KEGG 168 

pathways related to metabolism (Figure 3). The highest enrichment observed was for the sulfur 169 
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metabolism pathway, which, along with cysteine and methionine metabolism (fourth highest 170 

enrichment), has been previously reported as downregulated in arabidopsis mutants lacking dawn 171 

clock components (LHY and CCA1)(Flis et al. 2019). We also found enrichment for carbon 172 

metabolism and amino acid biosynthesis, which have been shown to be interlinked in diel 173 

regulatory loops between photosynthesis, carbon metabolism, and nitrogen metabolism(Stitt et 174 

al. 2002). Finally, enrichment for ribosomes and protein processing agree with previous work 175 

demonstrating that translation of ribosomal proteins is diurnally regulated(Missra et al. 2015) 176 

and that translation and protein degradation rates are tightly diurnally coupled(Mehta et al. 2021; 177 

Duncan and Millar 2022). Because plant growth relies on effectively coordinated synthesis and 178 

degradation of starch during the day and night(Stitt and Zeeman 2012), respectively, it is quite 179 

possible that allelic variation for diel transcription of genes in these various metabolic pathways 180 

result from, or contribute to, variable (mal)adaptation among these 24 inbred lines to the diurnal 181 

conditions under which they were grown.  182 

 183 

Figure 3: KEGG pathway enrichment results from 489 DDR genes, compared to the background 184 
set of 33,201 genes transcribed in at least one tissue of at least one NAM parent line. 185 
 186 
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Comparison of diel transcript abundance in an independent experiment 187 

We compared diel patterns of transcript abundance in our field grown plants to three inbreds 188 

sampled every three hours in a growth chamber (Supplemental Data 4). We found that among 189 

those three inbreds, rank order for the number of significantly cycling genes was preserved. Of 190 

all genes that we observed as significantly cycling in the field, 38% (CML103) to 68% (P39) 191 

were also significantly cycling in the growth chamber assay (Supplemental Figure 3, 192 

Supplemental File 4). This underscores the fact that diel regulation of transcription is consistent 193 

across development and environment for some genes, but condition-specific for others. Nearly 194 

half of the DDR genes identified in the field experiment were also identified as DDR in the 195 

growth chamber, despite the fact that not all haplotypes from the field experiment are 196 

represented by the limited genetic diversity of only three inbreds in the growth chamber 197 

experiment, as well as the fact that we used a different statistical method for assessing the 198 

significance of DDR in growth chamber materials (see Methods). For the following enrichment 199 

analyses, we used 205 genes identified as DDR in both field and growth chamber experiments 200 

(Supplemental Files 5 and 6). 201 

 202 

DDR candidates are enriched for GWAS hits 203 

Because the circadian clock regulates numerous biological processes(Lu et al. 2017), we 204 

hypothesized that allelic differences in diel transcription patterns contribute to natural variation 205 

for traits regulated by the circadian clock. To test this hypothesis, we checked whether DDR 206 

candidates are enriched for GWAS hits relative to randomly selected genes. However, choosing 207 

an appropriately matched set of genes from which to take random samples is non-trivial, in order 208 
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to ensure that the random samples are truly representative and a fair comparison to the DDR 209 

genes under consideration.  210 

We compared GWAS hits in DDR genes to random selections from four different subsets of 211 

annotated genes: 1) all annotated genes, as a baseline. This null set was likely to overestimate the 212 

significance of DDR genes, because the set of all gene annotations contains pseudogenes and 213 

incorrectly annotated genes that are likely to have fewer significant GWAS associations. 2) all 214 

genes that show evidence of transcription in at least one tissue, in at least one of the 26 NAM 215 

parents(Hufford et al. 2021). 3) genes that show evidence of diel rhythmicity in at least two 216 

inbreds. This gene set was chosen to represent the set of genes that are either segregating for 217 

rhythmicity or constitutively rhythmic. 4) genes that show evidence of diel rhythmicity in at least 218 

22 inbreds. This gene set was chosen to represent genes that are constitutively, or nearly 219 

constitutively, rhythmic.  220 

We found that DDR genes have significantly enriched GWAS associations for 221 

photoperiod sensitivity traits compared to all genes (p<0.001), genes transcribed in at least one 222 

tissue/inbred (p<0.001), genes segregating for rhythmicity (p<0.02), and constitutively rhythmic 223 

genes, (p<0.004). DDR genes show weaker enrichment for flowering time traits, with significant 224 

enrichment only compared to all genes or genes transcribed in at least one tissue/inbred (Figure 225 

4A). 226 

GWAS hits for control traits (tassel length, tassel branch number, and leaf angle; chosen 227 

because we predicted they would not be influenced by DDR genes) were also all significantly 228 

enriched in DDR genes when compared to all annotated genes (p<0.001) or genes transcribed in 229 

at least one tissue/inbred (p<0.002). Compared to genes segregating for rhythmicity and genes 230 

with constitutive rhythmicity, DDR genes showed no enrichment in GWAS signal for leaf angle 231 
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or tassel branch number (p>0.09) (Figure 4A). Overall, the three control traits showed lower 232 

mean GWAS p-values at DDR genes than flowering time and photoperiod sensitivity, indicating 233 

DDR genes are more strongly associated with photoperiod and flowering than with control traits. 234 

We also checked whether DDR genes overlap with previously identified QTL for photoperiod 235 

sensitivity(Hung et al. 2012b), but found no evidence for a greater rate of overlap than randomly 236 

chosen genes (p=0.51). 237 

These findings demonstrate that DDR genes are enriched for GWAS hits related to 238 

photoperiod sensitivity, and that GWAS hit enrichment for flowering time, tassel traits, and leaf 239 

angle depends on choice of null gene set. Comparing to genes that show evidence of segregating 240 

for transcript rhythmicity (null set #2) may be overly conservative: even though many of those 241 

genes were not picked up as DDR candidates in our haplotype-based testing, it may that their 242 

segregation for rhythmicity contributes to complex trait variation (ie, the null set may be contain 243 

false negative DDR genes). On the other hand, comparing to genes that show any evidence of 244 

transcription may be an overly liberal test because the null set contains genes that are transcribed 245 

but not relevant to variation in the traits that we tested. The fact that DDR candidates show 246 

stronger GWAS associations than control genes for flowering time and photoperiod sensitivity 247 

traits support the hypothesis that allelic variation for diel transcription patterns contributes to 248 

longitudinal adaptation to longer days. 249 

 250 
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 251 

Figure 4: (A) Enrichment for GWAS signal in 205 DDR genes (black vertical lines) compared to 252 
random samples of 205 genes from four different null sets (gray and blue distributions). (B) 253 
Overlap between candidate adaptation SNPs from five previous scans for selection and DDR 254 
genes (black lines). Gray and blue distributions show overlap between candidate adaptation 255 
SNPs and randomly selected genes from different null gene sets. 256 

 257 

Night-Day eQTL are enriched for GWAS hits 258 

Next, using an independent dataset we tested our hypothesis that variable cis-regulation of 259 

diel transcription patterns contributes to natural variation for traits regulated by the circadian 260 

clock. Using RNAseq data from mature leaf tissue sampled in the Goodman Association Panel 261 

(GAP)(Kremling et al. 2018), we calculated the difference between nighttime and daytime 262 

transcript abundances as a rough estimator for how much transcript abundance varies diurnally, 263 

and used the difference as the response variable for eQTL mapping.  264 

We found that Night-Day cis-eQTL are highly enriched in GWAS hits for flowering time and 265 

photoperiod response for days to anthesis, compared to random SNPs sampled from within the 266 

same genomic context (<5,000bp away from the focal gene) and matched for minor allele 267 

frequency (Figure 5). There was no enrichment for tassel traits, as expected, or days to silk 268 
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photoperiod response, which was unexpected given the strong enrichment for days to anthesis 269 

photoperiod GWAS hits. These results also support the idea that cis-regulation of diel 270 

transcription may be contributing to changes in the adaptive traits of flowering time and 271 

photoperiod sensitivity. 272 

 273 

Figure 5: Overlap between GWAS hits and cis-eQTL for the difference between daytime and 274 
nighttime transcript abundance (black vertical lines). Gray distributions represent overlap 275 
between GWAS hits and SNPs randomly sampled while controlling for minor allele frequency 276 
and distance from the nearest gene. 277 
 278 
DDR candidates are moderately enriched for signatures of selection 279 

Given that DDR candidates are enriched for GWAS hits related to flowering time and 280 

photoperiod sensitivity, and that cis-regulatory sequences are likely to evolve faster than TFs, 281 

changing gene regulation and ultimately phenotype(Stone and Wray 2001; Weirauch and Hughes 282 

2010), we hypothesized that diel transcription patterns may have been subjected to selection 283 

during adaptation of maize to higher latitudes. Using several independent studies of maize 284 

adaptation to changes in latitude and altitude(Romero Navarro et al. 2017; Swarts et al. 2017; 285 
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Gage et al. 2017; Wisser et al. 2019), we tested DDR candidates for enrichment of putatively 286 

selected regions (Figure 4B).  287 

Unlike our GWAS enrichment results, tests for enrichment of adaptive regions among DDR 288 

genes are not as sensitive to choice of null set; results remain similar regardless of whether we 289 

selected random samples from all genes, genes that show any evidence of transcription, or genes 290 

that show evidence of rhythmic transcription. 291 

DDR candidates are significantly enriched (p<0.001) for SNPs showing evidence of selection 292 

in Hallauer’s Tusón, a population of tropical traditional varieties that were selected for early 293 

flowering in Iowa, USA for 10 generations(Teixeira et al. 2015; Hallauer and Carena 2016). We 294 

observed low to no significance, however, for enrichment of putative adaptation SNPs identified 295 

from Fst between high and low photoperiod sensitivity lines or from three other published 296 

studies: eGWAS for latitude or altitude of origin(Romero Navarro et al. 2017) (p-value 0.04-297 

0.12), Fst between mexican lowland and northern flint accessions(Swarts et al. 2017) (p-value 298 

0.24-0.51), and Fst between 30 tropical and 30 temperate inbreds(Gage et al. 2017) (p-value 299 

0.03-0.22).  300 

Adaptation is complex, and involves modulation of processes beyond just those related to 301 

flowering and photoperiod sensitivity. It is possible that we were able to observe an enriched 302 

overlap of DDR genes and selected loci in Hallauer’s Tusón because the population was directly 303 

selected for early flowering time in a single location for ten generations, a less complicated 304 

selection history than experienced by natural populations. In the two studies of Fst between 305 

temperate and tropical accessions, the lack of enrichment for signals of selection near DDR 306 

genes may be because Fst is detecting allele frequency changes related to traits other than 307 

photoperiod sensitivity or flowering, or false positives in alleles that have had many more than 308 
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ten generations to drift. The Romero Navarro study of latitude and altitude was limited in its 309 

representation of traditional varieties from latitudes that would induce a photoperiod 310 

response(Romero Navarro et al. 2017).  311 

Although there is limited statistical significance for these tests of enrichment, in all instances 312 

the DDR genes had greater overlap with selection candidates than the median of all 313 

permutations, and across all tests the mean enrichment of selection candidates was 275% over 314 

the median value from permutations. P-values from Fisher’s combined test for p-values across all 315 

selection experiments ranged from 1.4e-5 (all genes) to 9.5e-5 (significantly cycling in two or 316 

more inbreds). These results support the hypothesis that DDR genes have been the subject of 317 

selection during adaptation to new environments, though the strength and consistency selection 318 

seems variable depending on the population. 319 

 320 

Conclusions 321 

In this study, we show that allelic variation for diel patterns of transcript abundance are 322 

common in maize and differences in diel transcript abundance rhythms appear at least partially 323 

explainable by sequence variation in cis-regulatory regions. It is also possible that transcriptional 324 

differences observed in this study are caused by differential chromatin accessibility or variation 325 

for trans-acting mechanisms. Observed variation in diel patterns of transcript abundance appear 326 

to influence photoperiod sensitivity (phenotypic plasticity for flowering time) and may have been 327 

targets of selection when maize was adapted to longer day lengths. These results are an example 328 

of how selection on sequence variation impacting gene expression can contribute to phenotypic 329 

plasticity and adaptation to new environments.  330 

 331 
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Materials and Methods 332 

Germplasm and field experiment 333 

We chose 24 of the 26 parents of the maize nested association panel (NAM)(Yu et al. 2008; 334 

Gage et al. 2020) to assay for diel patterns of transcript abundance. Inbreds were grown in the 335 

field at the Musgrave Research Farm in Aurora, NY in the summer of 2019. Due to different 336 

rates of development between inbreds, we sampled tissue from the first leaf without epicuticular 337 

wax to standardize the developmental stage of sampled tissue (Supplemental File 7). The last 338 

leaf with epicuticular wax was scored on July 16, 2019. Tissue was collected every two hours 339 

from 6am on July 19, 2019 until 4am on July 20, 2019. Approximately 1 cm2 of leaf tissue was 340 

collected from the center of the leaf blade, roughly measured by bending the tip back to the leaf 341 

base, on one side of the midrib. To avoid assaying wounding response, a different plant was 342 

sampled at each timepoint. If not enough plants were present to sample a different plant at each 343 

timepoint, a small number of timepoints were sampled from previously sampled plants, but from 344 

the opposite side of the midrib. Tissue samples were collected onto liquid nitrogen and kept cold 345 

throughout the experiment on dry ice. 346 

 347 

Growth chamber experiment 348 

Four genotypes (three of which overlap with genotypes grown in the field), B73, Mo17, P39, 349 

and CML103, were sown in 24-cell trays in 1:1 Lambert GPM:Turface. Two pots of each 350 

genotype were planted for each of 11 timepoints (0h through 30h), except for the 12h timepoint, 351 

for which four pots of each genotype were planted. Each pot was planted with 2 seeds on April 9, 352 

2019. An additional 44 pots were planted in the same manner with B73 to be used as a border in 353 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.16.628400doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.16.628400
http://creativecommons.org/licenses/by/4.0/


18 

the growth chamber. Experimental (non-border) pots were randomized every 2-3 days to reduce 354 

spatial effects. The growth chamber was set to 14-hour days at 26°C and 10 hour nights at 22°C. 355 

Tissue sampling occurred when plants were at approximately v3 growth stage, younger than 356 

plants sampled in the field experiment. Tissue was collected from the middle of the second leaf 357 

from the healthiest plant in each pot starting on April 22, 2019 at 09:00 (~1 hour after lights 358 

come on) and continuing every 3 hours until April 23, 2019 at 15:00. Tissue samples were 359 

collected onto liquid nitrogen and kept cold throughout the experiment on dry ice. 360 

 361 

RNA-seq and bioinformatic analysis 362 

RNA extraction and 3’ RNA sequencing was performed by the Genomics Facility at the 363 

Cornell Institute of Biotechnology following methods previously described(Kremling et al. 364 

2018). Cutadapt(Martin 2011) version 2.3 was used to trim 12 bases from the 3’ end as 365 

recommended by Lexogen, remove bases with quality <20 from the 3’ end, remove TruSeq 366 

adapters and any poly-A or poly-Ts. Because all the NAM parents have de novo genome 367 

assemblies(Hufford et al. 2021), read alignment and transcript abundance estimation was 368 

performed using the cognate genome assembly for each of the 24 inbred lines to reduce reference 369 

bias. Read alignment and counting wer done using Salmon(Patro et al. 2017) v1.8 with the 370 

options --libType A --validateMappings --noLengthCorrection. Transcript abundance was 371 

normalized using the estimateSizeFactors() and counts() functions from the R(R Core Team 372 

2018) package DESeq2(Love et al. 2014). 373 

 374 
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Predicting cycling status from promoter sequence 375 

For the field experiment data, each gene in each inbred was evaluated for rhythmicity in R(R 376 

Core Team 2018) using the MetaCycle(Wu et al. 2016) function meta2d(), as well as the 377 

diffCircadian(Ding et al. 2021) function LR_rhythmicity(). Because the meta2d() function 378 

aggregates rhythmicity test statistics from three different methods, using both MetaCycle and 379 

diffCircadian resulted in testing each gene for rhythmic patterns of transcript abundance via four 380 

different methods.  381 

To model the relationship between promoter sequence and rhythmic diel patterns of 382 

transcript abundance, we adapted a modification of the DanQ model(Quang and Xie 2016), 383 

originally developed to predict chromatin accessibility. The model architecture consists of 384 

convolutional and max-pooling layers followed by a bidirectional LSTM to allow the model to 385 

learn DNA sequence motifs and their interactions that are predictive of cyclical transcript 386 

abundance patterns.  387 

Our model was trained with the sequence from 1000bp upstream to 500bp downstream of the 388 

annotated transcription start site of the first transcript (“T001”) of each gene as features. Each 389 

gene had three continuous labels: relative amplitude computed by MetaCycle, and p-value and 390 

R2 from diffCircadian. We chose these labels to attempt to quantitatively capture the amount of 391 

evidence for rhythmic diel transcript abundance patterns. 392 

We trained our model for 500 epochs, using all genes from 12 inbreds as training data and all 393 

genes from 3 inbreds as validation data. We converted the trained convolutional filters into 394 

sequence motifs using methods adapted from(Koo and Eddy 2019). Filter sequence logos were 395 

inspected visually and compared to known, previously published Arabidopsis TF binding motifs. 396 

 397 
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Identification of DDR candidates in field experiment 398 

Using the maize PHG v1 (available at https://phg.maizegdb.org, accessed September 399 

2024)(Bradbury et al. 2022) method name 400 

“CONSENSUS_84plusRef_mxDiv_10toNeg3_maxClusers30”, we assigned haplotypes for 401 

reference ranges that overlapped with the 1000bp upstream of each gene in each inbred. For each 402 

pangene, we tested for an association between haplotype ID and the difference in magnitude 403 

between maximum and minimum transcript abundance during the 24 hour time course using a 404 

Kruskal-Wallis (KW) test. To estimate p-values, we permuted haplotype labels and re-calculated 405 

the KW test statistic 10,000 times per reference range. 406 

Pangenes were considered to be Differential Diel Regulation (DDR) candidates if the p-value 407 

of the KW permutation test was < 0.05, at least six inbreds had significant single-gene cycling 408 

tests (p < 0.01), and at least six inbreds had baseline transcript abundance values greater than 50. 409 

The additional filtering on single-gene cycling tests ensured that the KW test of change in 410 

transcript abundance was including genes with some evidence of diel rhythmicity, and the 411 

baseline transcript abundance filtering was to remove noisy, low-expressed pangenes. 412 

 413 

KEGG pathway enrichment 414 

Gene ontology enrichment was performed using ShinyGO v0.8.1(Ge et al. 2020) 415 

(https://bioinformatics.sdstate.edu/go/, accessed December 6, 2024). The web application was 416 

used with the Ensembl/STRING-db ID set to “zmays_eg_gene”. The 489 DDR genes were used 417 

as input, and the background was set to the list of all genes transcribed in at least one NAM 418 

parent, in at least one tissue (33,201 genes). All other settings were left at default, and we 419 

evaluated results for KEGG pathways. 420 
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 421 

Identification of DDR genes in growth chamber experiment 422 

To robustly filter the DDR genes identified in the field experiment, we tested the 489 field 423 

experiment DDR genes for allelic differences in diel transcription in the growth chamber 424 

experiment. We grouped P39, B73, and CML103 samples (each genotype replicated twice per 425 

timepoint) based on haplotype imputed from the PHG, as described for the field experiment data 426 

above. We then tested for differences between haplotypes using the LR_diff() function from the 427 

diffCircadian package(Ding et al. 2021). If all three genotypes had the same promoter haplotype, 428 

the gene was not tested. If all three genotypes belonged to two haplotype groups, we simply 429 

tested the difference between the two haplotypes. If all three genotypes had three different 430 

haplotypes, we performed pairwise tests between all three haplotypes and kept the lowest p-431 

value. 205 genes with a p-value for differences in amplitude less than 0.01 were considered 432 

significant and used for GWAS and adaptation enrichment experiments below. 433 

 434 

Enrichment for GWAS results and evidence of adaptation 435 

We performed GWAS in the maize Goodman Association Panel (GAP) population, which 436 

consists of 282 diverse inbred maize lines(Flint-Garcia et al. 2005). Phenotypic data were 437 

previously collected (Tian et al. 2011; Hung et al. 2012a; b) and compiled for ease of 438 

use(Khaipho-Burch et al. 2023). We followed the methods for fast association described 439 

in(Khaipho-Burch et al. 2023), using high density genotypes for the GAP on the B73v5 440 

reference genome (Grzybowski et al. 2023). We chose to test for enrichment of GWAS signal in 441 

traits related to flowering time and latitudinal adaptation: growing degree days to flowering for 442 

silk (DTS) and anthesis (DTA), and photoperiod response, or the difference between DTS (or 443 
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DTA) under long days and short days. We also chose to include leaf angle, tassel length, and 444 

tassel branch number as control traits that we predicted would not be enriched for GWAS signal 445 

in DDR candidates. GWAS was performed using rTASSEL(Monier et al. 2022), an R-based 446 

front end for TASSEL(Bradbury et al. 2007). 447 

To compare GWAS p-values from 205 DDR candidates to random samples, we first took the 448 

mean of the minimum p-value within each DDR candidate gene +/- 1000bp. This was compared 449 

to 1,000 random samples of 205 of genes drawn from a null set. Because results of permutation 450 

tests like this can be highly dependent on the choice of null set, we tested four different null sets: 451 

1) all annotated gene models; 2) annotated genes with >5 transcripts per million (TPM) in at least 452 

one tissue of at least one NAM parent(Hufford et al. 2021); 3) annotated genes that show 453 

evidence of cycling (p<0.01) in at least two inbreds in this study; 4) annotated genes that show 454 

evidence of cycling (p<0.01) in 22 or more inbreds in this study. The second null set was chosen 455 

to reduce our sampling of pseudogenes or other non-functional genes relative to the first null set. 456 

Null sets #3 and #4 were chosen to capture genes showing segregation for rhythmicity and near-457 

constitutive rhythmicity, respectively. 458 

Next, we tested whether DDR candidates showed evidence of enrichment for signatures of 459 

selection or adaptive function. SNP variants showing evidence of selection or adaptation were 460 

collected from previous studies of: environmental GWAS of maize landrace adaptation to 461 

latitude and altitude(Romero Navarro et al. 2017); FST between temperate and tropical maize 462 

inbreds(Gage et al. 2017); FST between maize from central Mexican lowlands and Gaspé Flint 463 

from Quebec(Swarts et al. 2017); and directed, short term evolution in the maize Tuson 464 

population for day length adaptation(Wisser et al. 2019). In addition, we calculated Fst between 465 

30 inbred lines with the lowest photoperiod response values and 30 inbred lines with the highest 466 
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photoperiod response values in the GAP(Hung et al. 2012b) using SNP data from (Grzybowski 467 

et al. 2023) in VCFtools(Danecek et al. 2011) and kept the top 10,000 SNPs as putative 468 

adaptation variants. 469 

For each set of adaptation candidate SNPs, we first counted the number of adaptation SNPs 470 

that overlapped with DDR genes +/-1000bp. We then sampled an equal number of genes from 471 

each of our four null sets and counted the number of adaptation candidate SNPs that overlapped 472 

with this sample. This sampling procedure was repeated 1,000 times to generate a null 473 

distribution, and the p-value for each set of DDR candidates was estimated as the proportion of 474 

random samples that had more overlapping adaptation SNPs than the DDR candidate genes.  475 

 476 

eQTL overlap with GWAS hits 477 

We performed an additional test for whether changes in cis-regulatory sequences associated 478 

with changes in transcript abundance co-localize with GWAS hits for photoperiod sensitivity, 479 

flowering time, and control traits. Using daytime and nighttime leaf transcript abundance data 480 

from(Kremling et al. 2018), we estimated the degree of diel fluctuation in transcripts by 481 

subtracting estimates of daytime expression from estimates of nighttime expression. We then 482 

performed eQTL mapping in 203 individuals using the same techniques described by(Kremling 483 

et al. 2018). We then counted the overlaps between cis-eQTL, within 5,000bp of their focal gene, 484 

and GWAS hits (variants with p-value < 1e-5) for photoperiod sensitivity, flowering time, leaf 485 

angle, tassel length, and tassel branch number. This overlap was compared to 10,000 random 486 

draws of the same number of SNPs as cis-eQTL, matched for distance to the nearest gene and 487 

distribution of minor allele frequency. 488 

 489 
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Code availability 490 

Code will be available upon final publication at https://github.com/joegage/diverse_diel 491 

 492 

Data availability 493 

All sequencing data will be available on NCBI SRI upon final publication. All supplementary 494 

data will be made publicly available upon final publication.  495 
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